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Abstract
Fundamental understanding of two-dimensionalmaterials has spurred a surge in the search for
topological quantumphase associatedwith the valley degree of freedom (VDOF).We discuss a spin-
polarized version to theVDOF inwhich spin degeneracy is broken by the antiferromagnetic exchange
coupling (LAFM) between opposite layers of the quasi-two-dimensional silicon nanomembrane
(SiNM). Based onfirst principles calculations, we found that the LAFM state in SiNMcan lead to
metal–insulator transition (MIT). The broken degeneracy of spin degree of freedom in this insulating
state of ultrathin SiNMmay differ for different valleys, so that the SiNMcan be exploited to produce
the spatially separated spin and valley currents.We propose that the tunable spin-polarized valley
photocurrents can be generated in an experimentally feasible ellipsometry setup.Ourwork shows
promise for the development of spintronic and valleytronic devices compatible with current silicon
industry.

Recently the atomically thin two-dimensional trans-
ition metal dichalcogenides (TMD) with inversion
symmetry breaking have received much research
interest because the electrons in solids are endowed
with valley pseudospin degree of freedom in addition
to real spin. Being able to manipulate the valley
pseudospin shows promise for next-generation elec-
tronic devices in conventional semiconductors such as
valley filter and valve etc [1–7]. The opposite orbital
magnetic moments in a pair of nonequivalent valleys
in a hexagonal Brillouin zone (BZ) corners underlies
the valley-selective circular dichroism (VSCD) [8, 9],
the quantum valley Hall effect (QVHE) [10–12], and
the valley Zeeman effect etc [13–16]. Since the spin
degree of freedom (SDOF) normally mixes with valley
analogy, the generation and manipulation of the
spatially separated spin current and valley currents
remains challenging [17].

Motivated by the promising applications of silicon
nanomembrane (SiNM) and particularly the cap-
ability of straightforward integration into existing Si-

based technology platforms, SiNM was recently
assumed to realize potential valley devices [18–26].
Since valley polarization has to be obliged to band gap
opening around the Fermi level thanks to the optical
excitation [8, 9], the electronically metallic properties
[27, 28] of a few monolayer silicon materials however
render that the spin-polarized valley currents by opti-
cal pumping can not be practically feasible in ultra-
thin SiNM.

In this work, we propose theoretically by density
functional theory calculations that thickness-depen-
dent quantized spin-polarized valley currents could be
viable in SiNM.When the antiferromagnetic exchange
coupling (LAFM) between the top and bottom layers
in ultrathin SiNM is taken into account [29], it leads to
the metal–insulator transition (MIT) with an energy
gap of 0.29 eV at themeanfield theory level. The none-
quilibrium charge carriers of valley degree of freedom
(VDOF) in SiNM can be realizable in an experimental
ellipsometry setup regulated by the optical pumping
alike the circular photogalvanic effect (CPGE).
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The ultrathin SiNM can be effectively viewed as a
multilayer silicene with a Bernal-type stacking as
shown in figure 1(a) [25]. The band structure of two-
bilayer SiNM in nonmagnetic (NM) state shows that
the band dispersion around the nonequivalent K and
K′ valley overlap in energy and the band extremum
around each valley are shifted with respect to each
other in the (kx, ky) plane.When the initial magnetized
moments were set to the silicon atoms on top and bot-
tom layer of two-bilayer SiNM with opposite sign, the
self-consistent calculations leads to a LAFM state,
which is more stable by 50 meV than the ferromag-
netic (FM) state (figure 1(c)) (for calculation details,
see the supplementary information). The calculated
band structures of two-bilayer SiNM in LAFM state
show that a real global gap of 0.29 eV around the Fermi
level is introduced with the anticrossing bands (red
dashed line in figure 1(b)) indicating theMIT. The cal-
culatedmagnetized charge density (figure 1(a))mainly
comes from the partially hybridized pz orbital of the
outmost atoms (B1 and A2 atoms) on opposite sur-
faces of two-bilayer SiNM. The B1 (A2) and A1 (B2)
atoms show magnetic moments of 0.092 (−0.092) μB
and−0.015 (+0.015) μB respectively (figure 1(c)). The
calculated phonon dispersion (figure 1(d)) has no ima-
ginary frequency at all momenta, which indicates that
the two-bilayer SiNM in LAFM state is dynamically

stable. The optical and acoustic branches are well sepa-
rated with a phonon band gap appearing around
7.5 THz, which might be a useful signature to spectro-
scopically determine highly stressed SiNM [30].

With the increasing thickness, it is found that the
LAFM state in SiNM can persist up to eight-bilayer
with the converged magnetic moments of 0.22 μB on
surface Si atoms (figure 1(c)) as shown by themagneti-
zation density for four-bilayer SiNM (figure S1(a) in
the supplementary information). The energy gap initi-
ally increases up to three-bilayer SiNM and then
decreases to zero asymptotically. Thus the SiNM with
layer thickness smaller than eight-bilayer has an in-
plane FM coupling and an out-of-plane AFM cou-
pling, whose underlying mechanism calls for further
study [31, 32].

In NM state of SiNM, the spin (↓↑) and valley (K
and K′) degree of freedom have quartic degeneracy.
When the time reversal symmetry is broken, the
LAFM ordering lifts the quartic degeneracy into four
distinct states, ↑K, ↑K′, ↓K, ↓K′. Thus, it is quite nat-
ural to ask whether it is possible to achieve spin-polar-
ized valley currents in the ultrathin SiNM. In the
LAFM state, a translation between top and bottom
surface of SiNM is equivalent to reversing the two spin
flavors. Although no requirement of inversion sym-
metry conservation has to be satisfied in the LAFM

Figure 1. (a)Bernal stacked two-bilayer SiNM structure. The overlappedmagnetization density (4×10−3 electron Å–3) of the LAFM
state is denoted by yellow (blue) color for spin-up (spin-down) electron. (b)Electronic band structures of nonmagnetic state (solid
black) and LAFMstate (dashed red) of two-bilayer SiNM. (c) Layer dependence of the energy gap (blue), themagneticmoments
(orange) for the top-most silicon atom, the energy difference (green) between the LAFM state and the ferromagnetic state. (d)Phonon
dispersion of two-layer silicon structure including the layer antiferromagnetic coupling. The acoustic phonons around theΓpoint are
denoted by solid red lines.
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state, the band gap opening around nonequivalent val-
ley points has to be associated with the separate surface
plane. Thus it is obvious that W = -W K K and
W = -W¢ ¢,K K where W K represents the Berry cur-
vature for spin-up ↑ channel around the valley K
point. As a result, LAFM state can provide a versatile
playground for realizing the valley and spin currents in
SiNM without the requirement for inversion sym-
metry breaking as the VSCD in TMDs materials
[8, 33, 34].

According to the semiclassical equations of

motion ( ) ( )( )
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where  stands for the first Chern number. The
momentum dependence of Berry curvature ( )W k (the
spin index is ignored here for simplicity) is obtained by
[33]
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where ( ) ( ) ( )  g= + q k k e kij ij
x i

ij
y stands for the

matrix element of light–mater interaction. The index i
and j denote the different band index. The helicity of
incident light is determined by the amplitude ratio g
and phase retardation θ. g = 1 ( )g ¹ 1 corresponds
to circular (ellipsometric) polarized light. The direct
interband transition matrix

( ) ( )∣ ∣ ( ) k = - á  ña
ak ki u uij j i can be obtained by

the density functional perturbation theory. For the
direct interband transition between the top valence
band and the bottom conduction band, the momen-
tum dependent berry curvature ( )W k (equation (2)) is
shown in figure 2(a). Since ( )W k is an odd function
with respect to the spin flavor W = W  ¢,K K only spin-
up flavor of Berry curvature ( )W k (γ=1, θ=π/2)
is shown in figure 2(a). Valley contrasting Berry
curvature in the BZ indicates that in the presence of in-
plane electric field, spin-up flavor will acquire anom-
alous velocities of opposite signs in the two valleys

accumulating separately on top surface of silicon
nanomembrane yielding spin-polarized QVHE
(figure 2(b)). If the integral of the momentum
dependent Berry curvature was performed on a closed
manifold, say the half BZ (K or K′ valley), we obtained
the valley Chern number as  = 1v indicating that the
single channel long-lived valley currents can persist
over extended distances in the absence of spin flip and
interlayer scattering. In the presence of in-plane
electric-field the population of SDOF of electrons is
spatially separated from those of valley counterpart
allowing the simultaneous manipulation of spatially
separated spin and VDOF without interference in
SiNM (figure 2(b)). This has important difference with
the previous work [34], where the antiferromagnetic
coupling is involved through in-plane nearest-neigh-
bors exchange interaction. However interlayer AFM
coupling discussed here simply breaks the quartic
degeneracy and do not involve the spin-valley coupled
physics as illustrated before.

In order to check the valley-dependent polariza-
tion in thicker SiNM, we have calculated the Berry
curvature ( )W k of four-bilayer SiNM for direct inter-
band optical transition of one spin flavor between top
of valence band and bottom of conduction band (see
the figure S1 in the ESM). It is found that the valley
contrasting Berry curvature can still be readily identi-
fied in thicker SiNM with smaller triangle spots in the
BZ. At equilibrium, the charge carriers’ anomalous
velocities acquire opposite signs for each spin and val-
ley in freestanding SiNM, exactly canceling each oth-
er’s contribution to the transverse current. However,
the optical absorption is not zero at the valley point
from the direct interband transition matrix
(equation (2)). This inspired us to selectively excite
electrons at the K (K′) valley point by left- (right-)
polarized light.

The chiral optical selection rule is determined by
both intracellular (parent atomic orbitals) and inter-
cellular (lattice symmetry) current circulation [34].
Due to the weak spin–orbit coupling of pz orbit of sili-
con atom, the former part of orbitalmagneticmoment

Figure 2. (a)Momentum resolved Berry curvature ( )W k (γ=1, θ=π/2) of direct interband transition betweenVB andCB in
antiferromagnetic two-layer silicon. Thefirst Brillouin zone is denoted by the yellow hexagon. The color code is in atomic units
(bohrs2). (b) Schematic diagramof valley currents in two spin components separated in the top and bottom layer with the presence of
in-plane electricfield and non-zero Berry curvature.
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is assumed to be absent. The latter part is related to
QVHE due to the valley orbital magnetic moments
[10]. On this basis, the momentum dependence of cir-
cular polarization were calculated via the direct inter-
band dipole transitionmatrix ( )a kij as

( ) ( )
∣ ( ) ∣ ∣ ( ) ∣

∣ ( ) ∣ ∣ ( ) ∣

 
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-

+

+ -

+ +k . 3
k k

k k
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ij ij

2 2

2 2

This quantity is the difference between the absorp-
tion of the left- and right-handed lights, normalized by
the total absorption in the momentum space. The cal-
culated degree of circular polarization ( )h k for spin-
up flavor of two-bilayer SiNM shows a three-fold sym-
metry in the vicinity of K (K′) valley points in
figure 3(a). It is clear that the valley contrasting cir-
cular dichroism is generated by the circularly polar-
ized light.

The emergence of valley contrasting circular
polarization of SiNM in LAFM state allows for the
selective generation of nonequilibrium spin and valley
carriers by different helicity of incident photon as
shown in figure 3(b). The left circularly polarized light
(σ+) can generate a pair of spin ↑ electron and spin ↓

hole in K valley on the top surface. Since the spin angu-
lar momentum is conserved in optical transition, σ+

excitation also generates a pair of spin ↓ electron and
spin ↑ hole on the bottom surface. With a sufficiently
large in-plane electric field, the pair of spin ↑ electron
and spin ↓ hole is dissociated to pile up on the opposite
boundary with imbalanced spin Hall currents on the
top surface. For the right circularly polarized light (σ−)
excitation, the SHE will behave in a similar way with
σ+ excitation. These results validate the VSCD in
SiNMwith LAFMstate.

If the amplitude ratio g = 1 and the phase retar-
dation θ of incident light are applied to the SiNMat the
same time in experimental ellipsometric setup, tun-
able valley current could be feasible. To show this, the
valley Chern number is calculated by changing the
phase retardation θ from 0 to π and the amplitude
ratio γ from 10−2 to 102 at an interval of one order.

The obtained valley Chern number dependence on the
incident light is shown in figure 4. It is seen that the
dependence of valley Chern number on the phase
retardation θ of the incident light agrees with the stan-
dard sine function. In this way the tunable valley cur-
rent JCPGE from the anomalous transverse velocities
(equation (1)) can be generated by circularly polarized
lights resulting into CPGE (figure 4(a)). The larger
(smaller) amplitude ratio γ of incident light will
increase (decrease) the valley current JCPGE. The max-
imum valley current JCPGE (θ=π/2) decrease linearly
with the increasing the layer thickness (figure 4(b))
indicating that the larger AFM coupling can enhance
the CPGE like the case of two-bilayer SiNM. Thus the
tunable spin-polarized quantum valley hall effect
might be realized in ellipsometry setup (figure 4(c))
which depends not only on the light helicity but the
phase retardation θ and the amplitude ratio γ of inci-
dence light.

In conclusion, we show here that ultrathin pris-
tine SiNM show promising properties of VSCD
because two inter-band transitions around the Fermi
level are associated with not only the SDOF but also
the VDOF. Since spin and valley degeneracy is bro-
ken, this leads to spin and valley separation, demon-
strating a photo-helicity driven spin and valley
current effect [37, 38], which will be beneficial to the
spin-optoelectronics for silicon materials. Since the
crucial layered spin-polarization in SiNM can have
exchange coupling in a layer-separation range of
beyond the thickness of several bilayer, the exper-
imental setup can be built by two layer of Dirac sys-
tem (like graphene and silicene) intercalated by an
thin insulating layer, say boron nitride. In this case,
the LAFM exchange coupling should remain. Once
the layered spin-polarization in van der Waals struc-
tures can be measured in experiments by, say spin-
polarized scanning tunneling microscopy, our pro-
posal will be promising to be realized under extre-
mely low temperature.

Figure 3. (a)Momentum resolved circular dichroism η(k ) (γ=1, θ=π/2) of two-bilayer silicon nanomembrane for spin-up state
in the entiremomentum space due to the direct interband transition betweenVB andCB. The first Brillouin zone is located inside the
yellow hexagon. Only the spin up component is plotted, while the other spin component have opposite values in the entire Brillouin
zone. (b)Optical transition selection rules of layer spin and valley. The red (blue) colors indicate spin ↑ (↓) components which are
shifted slightly for clarity.
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