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Photoexcitation in Solids: First-Principles Quantum
Simulations by Real-Time TDDFT

Chao Lian, Mengxue Guan, Shiqi Hu, Jin Zhang, and Sheng Meng*

An efficient and state-of-the-art real-time time-dependent density functional
theory (rt-TDDFT) method is presented, as implemented in the
time-dependent ab initio package (TDAP), which aims at performing accurate
simulations of the interaction between laser fields and solid-state materials.
The combination of length-gauge and velocity-gauge electromagnetic field has
extended the diversity of materials under consideration, ranging from low
dimensional systems to periodic solids. Meanwhile, by employing a local
basis presentation, systems of a large size are simulated for long electronic
propagation time, with moderate computational cost while maintaining a
relatively high accuracy. Non-perturbative phenomena in materials under a
strong laser field and linear responses in a weak field can be simulated, either
in the presence of ionic motions or not. Several quintessential works are
introduced as examples for applications of this approach, including
photoabsorption properties of armchair graphene nanoribbon, hole-transfer
ultrafast dynamics between MoS2/WS2 interlayer heterojunction,
laser-induced nonthermal melting of silicon, and high harmonic generation in
monolayer MoS2. The method demonstrates great potential for studying
ultrafast electron-nuclear dynamics and nonequilibrium phenomena in a wide
range of quantum systems.

1. Introduction

Real-time time-dependent density functional theory (rt-TDDFT)
approaches, wherein the electron density is propagated in real
time through numerical integration of the time-dependent
Kohn–Sham (TDKS) equations, receive intensive interests re-
cently in the research frontier of laser–matter interaction.[1,2]

The rt-TDDFT methods could provide directly time-domain evo-
lution of electronic wave functions together with ionic move-
ments, representing a versatile way for real-time tracking of
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ultrafast dynamics and phenomena ei-
ther in perturbative or non-perturbative
regimes.[3–8] Therefore, it has been a unique
ab initio quantum method applicable for
the exploring of strong field physics beyond
linear response theory, for instance, high
harmonic generation [9,10] and ultrafast pho-
toelectron emission.[11]

Recently, the scope of rt-TDDFT applica-
tions has greatly extended from treating iso-
lated atomic and molecular systems to con-
densed phase materials. In most previous
works, numerical implementations of rt-
TDDFT that aim at handling solidmaterials
were built on real-space grids,[12,13] includ-
ing some well-known program packages
such as OCTOPUS[9,14] and SALMON.[15,16]

Real-time TDDFT has also been imple-
mented in plane wave codes, for exam-
ple, the ELK FP-LAPW[17] and FPSID,[18]

whose encouraging results have shown the
effectiveness of the rt-TDDFT approaches.
However, if one is interested in high en-
ergy excitation that is on the energy scale
of tens to hundreds of electron volts (eV),
extremely dense real-space grids and high

kinetic energy of plane waves are indispensable. Meanwhile, to
describe a system with Na atoms, 103 to 104 ×Na real-space grids
or plane waves have to be used, which makes the simulation of
large-size systems impractical using computer resources avail-
able at the present stage. The above two factors will significantly
increase the computational cost and in turn limit the practicabil-
ity of the rt-TDDFT methods.
Here we introduce a real-time ab initio approach based on lo-

cal atomic basis for simulating electron-nuclear dynamics un-
der laser excited conditions. This approach has been successfully
implemented in the time-dependent ab initio package (TDAP)
within the framework of density functional theory (DFT) and
time-dependent DFT (TDDFT).[19,20] We use local atomic basis
sets and real-time propagation of wave functions for solving the
time-dependent Kohn–Sham (TDKS) equations, which endows
our approach several advantages over available approaches, as
discussed below.

I. The adoption of overwhelmingly efficient atomic orbital ba-
sis sets, which are small in size (10 × Na) and fast in per-
formance, enables the simulation of either periodic systems
or a finite-sized supercell with a large vacuum space with-
out heavy computing cost, while maintaining a relatively
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Figure 1. Elapsed computer time for evolving 40 fs electron dynamics
in the time evolution calculation of Ag6, Ag20, Ag55, and (10,0) carbon
nanotube from OCTOPUS (black) and TDAP (red). The insets show the
schematic atomic structures.

high accuracy. In Figure 1, we show the computational ef-
ficiency for calculating the optical response of metallic clus-
ters Ag6, Ag20, Ag55, as well as that for a complex semicon-
ducting material, capped (10, 0) carbon nanotube (dangling
bonds are saturated with hydrogen atoms, yielding a C200H10

tube) using the real-grid code OCTOPUS and the TDAP
code. Within the real-space TDDFT code OCTOPUS, adia-
batic local density approximation (ALDA) for the exchange
correlation functional is used. The simulation zone is de-
fined by assigning a sphere around each atom with a radius
of 6.0 Å and a spacing of 0.2 Å between grid points. The
Troullier−Martins pseudopotentials are used to represent
the interaction between valence electrons and atomic core.
To do the time integration of the electrons, approximated
enforced time-reversal symmetry (AETRS) is used for eval-
uating the propagator. As for TDAP calculations, the same
pseudopotentials, exchange correlation functional, and laser
waveform have been used. Numerical atomic orbitals with
double zeta polarization (DZP) are adopted as the basis set.
Meanwhile, the first order Crank–Nicholson is used as the
propagator. For the data shown in Figure 1, all the systems
are evolved for the same time period (40 fs) in both OCTO-
PUS and TDAPby propagating Kohn–Shamwave functions.
The efficiency can be extracted from the dependence of com-
puter time on the system size by using the same number
of message-passing-interface (MPI) processes and laser pa-
rameters. It is clear that the use of local atomic basis in the
TDAP code can accelerate the simulation efficiency by four
to ten times for these relatively small systems.

II. Electronic states localized near the atomic nucleus can be
treated efficiently by employing the approach of linear com-
bination of atomic orbitals (LCAO) approach. Thus, it is
promising to realize simulations that focus on understand-
ing the inner-shell excitations and to investigate electron
dynamics on the femtosecond and sub-femtosecond time
scale.[21]

III. Real-time excited state trajectories are achieved with many-
electron density propagating self-consistently at every elec-

tronic and nuclear steps and forces calculated from mean-
field theory, offering a directmicroscopic picture on ultrafast
dynamics of electrons and nuclei upon photoexcitation.

IV. Thanks to the development of the momentum (k) resolved
rt-TDDFT algorithm, calculations of solids and surfaces
can be performed by using a rather small unit cell, hav-
ing reduced computational cost by several orders of mag-
nitudes. Moreover, k resolved excitation dynamics are ob-
served, showing the necessity and importance of the ap-
proach to reveal detailed mechanisms at the atomic level.

Our approach behaves well in treating quantum dynamics pro-
cesses including photoabsorption, interface electron injection,
electron-hole combination, structure phase transition, as well as
high harmonic generation. The advantages of employing a real-
time approach of TDDFT enable us to simulate quantum ma-
terials under strong ultra-short laser field beyond the perturba-
tive theory, and nonequilibrium "hidden states," as well as ex-
otic behaviors in a variety of degrees of freedom (electron, lattice,
spin, . . . ).[22] At present, these studies are limited to the investi-
gation of early stages (a few hundreds of femtosecond) of excited
state dynamics due to the constraints of computer resources and
the stability of algorithms. However, when there is branching in
the electronic trajectories, our approach can address issues re-
lated to the mechanisms leading to the branch or decay. Efforts
along this line are currently underway.

2. Methodology

For the simulation of periodic solid-state materials, the k-space
resolution is most desired for the sake of revealing the nature
of photoexcitation and for fast time evolution of complex elec-
tronic structures. An important advantage of using k-resolved rt-
TDDFT is its computational efficiency. With many k-points sam-
pling the reciprocal space, a relatively small simulation cell can
be used to simulate quantum phenomena for a long time. Mean-
while, k-resolved algorithm introduces the important k-space res-
olution and a new degree of freedom, which is essential to de-
scribe key quantities and important physics in condensed matter
materials such as time-dependent band structure, quasiparticles
scattering, and valley dynamics. In other words, only rt-TDDFT
with k-resolved sampling can provide essential information con-
cerning their real-time evolution. From this point of view, we have
successfully developed k-resolved rt-TDDFT algorithm based on
local atomic basis sets. The main framework of k-resolved rt-
TDDFT algorithm is inherited from an earlier single-� version
of TDAP,[19] which is based on the SIESTA package.[23,24] Fig-
ure 2 shows the flowchart of real-time excited state simulation
at a given electronic step, which will be explicitly described in the
following section.

2.1. Hamiltonian and Overlap Matrix

Adopting the periodic boundary conditions, the lattice vectors
are denoted as Rs (s = 1, 2, 3, . . . , N) and the atoms are denoted
by index i in the unit cell located at positions bi , where N
is truncated to form a finite supercell. A set of numerical
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Figure 2. Flowchart of k-resolved algorithm for the evolution of electronic
system. Here, Sk is the overlap matrix, Hk is the Hamiltonian matrix, and
unk is the TDKS orbitals at k.

atomic-centered orbitals (NAOs) are associated with each atom,
where α denotes both the orbital and angular quantum numbers
of the atomic state, together with the multiple radial basis
function ζ .[23] The local basis functions are numerical radial
functions multiplied by spherical harmonics. The parameters
for generating atomic basis sets we use here are default values
generated by SIESTA, with well converged results.[23–26] For
simplification, atomic units � = me = e = 1 are used and only
operators that explicitly dependent on t are denoted as f (t)
throughout this work unless specifically noted.
Overlap matrix Sk and Hamiltonian Hk at each k point are

expressed with NAOs

Siα, jβ,k =
∑
s

e−ik·Rs 〈
ξiα(r + Rs + bi )

∣∣ ξ jβ (r + b j )
〉

(1)

Hiα, jβ,k =
∑
s

e−ik·Rs 〈
ξiα(r + Rs + bi )

∣∣ Ĥ
∣∣ ξ jβ (r + b j )

〉
(2)

where s is the index of ion, which sums over an auxiliary super-
cell. For periodic systems, the auxiliary supercell is needed to
compute properly the matrix elements involving orbitals in dif-
ferent unit cells. The volume of auxiliary supercell is determined
based on the criterion that the boundary is larger than the cutoff
of the atomic orbitals. The widely used Monkhorst–Pack scheme
for Brillouin zone integration is also adopted. The results are con-
vergent with well tested mesh grid size. [23–27]

Here,

Ĥ = T̂ +
∑

V local
I (r)+

∑
VKB
I + VH(r)+ VXC(r)+ V ext(r) (3)

is the Hamiltonian operator, T̂ = 1
2 ∇2

r is the kinetic energy oper-
ator, V local

I and VKB
I are the local and Kleinman–Bylander parts

of the pseduopotential of atom I, and VH, VXC, VEext are the
Hartree, exchange-correlation (XC), and external electric field po-
tential, respectively. At a given time t, the XC energy (Exc(ρ(t))) is
only determined by the charge density ρ(t). At each time step,
the calculation of Exc with the given ρ(t) is carried out by the
original SIESTA subroutines, in the same way as the processes
in regular DFT calculation. Therefore, all functionals working
in SIESTA (e.g., CA, PW92, PBE, revPBE, RPBE, PBEsol, KBM,
WC, BLYP) are accessible in the current implementation, while
the hybrid functionals have not been implemented because addi-
tional self-consistent processes for calculating the Hartree–Fock
exchange term are needed. We note that the nonlocal part of
the pseudopotential would also depend on the vector potential
to preserve the gauge invariance. Details in the calculation of
〈ξiα(r + Rs + bi )|Ĥ|ξ jβ (r + b j )〉 are described byOrdejón, et al.[24]
To simulate the interaction between laser field and various

materials, time-dependent electric field E(t) is introduced to the
Hamiltonian in two different scenarios: length gauge and vec-
tor gauge. Within length gauge, the effect of electric field E(t) is
added via V ext,

V ext(r, t) = −E(t) · r (4)

In order to overcome the troubles that the transitional sym-
metry of Hamiltonian might be broken by the presence of E, a
sawtooth field along spatial direction μ ∈ x, y, z is used

Eμ(r, t) =
{
Eμ(t) ε < xμ < Lμ − ε

−Eμ(t)Lμ/2ε −ε < xμ < +ε
(5)

in which Lμ is the length of unit cell along μ and ε → 0. As a re-
sult, it is vital to make sure that charge density ρ(xμ) must vanish
in the region −ε < xμ < +ε. Otherwise, the energy will diverge
for −Eμ(t)Lμ/2ε → ∞. In this case, systems will be prelimited
into a supercell with vacuum layers along μ,[8,28] which limits the
approach to be applied only to finite systems.
To overcome the limitations mentioned above, the velocity

gauge form for the TDKS equations suitable for infinite periodic
systems is developed through a gauge transformation involving
the vector potential for electromagnetic field,

A = −c
∫
Edt, E = −1

c
∂A
∂t

(6)

yielding the velocity-gauge TDKS equation

H = 1
2m

(�k − e
c
A)2 = 1

2m
(�k + e

∫
Edt)2 = �

2

2m
(k + kA)2 (7)

kA = e
�

∫
Edt (8)

It should be pointed out that periodic vector potentials are es-
sential to describe accurate exchange-correlation effects of peri-
odic systems. However, the necessary extension from scalar to
vector potential has not yet been implemented. Moreover, the
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shape of E(t) can be discretionarily tuned in either case, for ex-
ample, assuming a Gaussian wave package

E(t) = E0 cos (2π f t + φ) exp
[
− (t − t0)2

2σ 2

]
(9)

where f is the laser frequency, t0 is the peak time, and φ is the
auxiliary phase.

2.2. Time Propagation

With time-dependent Hamiltonian and overlap matrix, TDKS
equations are solved to obtain unk(r, t) from the data at the previ-
ous time step,

∣∣unk(r, t2)〉 = exp
[−i S−1

k (t ′)Hk(t ′)t
] ∣∣unk(r, t1)〉 (10)

where unk(r, t) = ψnk(r, t) exp(−ik · r) is the periodic part of
Bloch function, and t = t2 − t1 is the length of time step, and
t ′ ≈ (t1 + t2)/2. Typically,t is quite small (<0.05 fs) and ion po-
sitions bi barely change from t1 to t2, which ensure the rationality
to take Sk(t ′) = Sk (t2) for evolving Sk(t) in Equation (1). However,
Hk(t) may vary significantly due to the rapid evolution of elec-
trons, two options are available,

Hk(t ′) = Hk(t2) (11)

Hk(t ′) = 1
2
Hk(t2)+ 1

2
Hk(t1) (12)

As pointed out by Wang, et al. and Ren, et al.[29,30], Hamilto-
nian elements change approximately linearly within 0.2–0.5 fs.
From this perspective, the latter is more accurate than the former
with t < 0.05 fs. Nevertheless, these two scenarios yield almost
the same results in practice.
Note that, when v-representativity is adopted for TDKS

equations,[1] even though unk(r)(t2) is not explicitly dependent
on the other TDKS orbitals un′k′ (r)(t1)(n′ �= n or k′ �= k), inter-
band scattering can be included for that Hk is determined by
the total charge density, which is a weighted summation over
all k points and all occupied orbitals. Numerically, the propaga-
tor exp(−i S−1

k Hkt) in Equation (10) is expanded using the first
order Crank–Nicholson scheme,

∣∣unk(r, t2)〉 = 1− i S−1
k Hkt/2

1+ i S−1
k Hkt/2

∣∣unk(r, t1)〉 (13)

Technically, calculation of Equation (13) is accelerated in two
aspects: Firstly, ScaLAPACK is used for the parallel matrix in-
version and multiplication. Secondly, S−1

k is only updated when
NAO positions bi are changed to minimize the computer time
used. Then, if ions are fixed, S−1

k is computed only once at the
first ionic step. Otherwise, S−1

k (t2) only need to be updated once
for each ionic step.

2.3. Charge Density and Self-Consistency

With unk(r, t2) solved in Equation (10), the density matrix (DM)
ρiα, jβ (t2) is computed accordingly as

ρiα, jβ (t2) =
∑
n

∑
k

qn,kc∗
n,iα,k(t2)cn, jβ,k(t2) (14)

where qn,k is electronic population of the band n at k, cn, jβ,k(t2) is
the coefficient of unk(r, t2) in NAO basis,

unk(r, t2) =
∑
jβ

cn, jβ,k(t2)ξ jβ (r) (15)

The self-consistent process[31] will substantially increase the
numerical stability. In this case all criteria for convergence test
developed in our code are compatible with those used in SIESTA,
such as that based on the difference in the maximum element of
DM, the difference in total energy, and the Harris energy differ-
ence. Here, we take the convergence criterion based on the dif-
ference in DM as an example. Convergence is reached when

max
{∣∣ρnew

iα, jβ − ρiα, jβ

∣∣} < η (16)

where η is about 10−4. If not, the linear mixing of DM is needed
to generate the input DM for the next cycle ρnext, instead of using
ρnew directly,

ρ = (1− w)ρ + wρnew (17)

where the ρ is the input DM and ρnew is the output DM, w is the
mixing weight, usually w = 0.1–0.5.

2.4. Post-Processing

Once the self-consistency in charge density evolution is sat-
isfied, post-processing such as the calculation of total energy,
Hellmann–Feynman forces, ionic trajectory will be evoked. For
instance, the forces acting on the ions can be calculated through
the Hellmann–Feynman theorem:

FRI =
∑
i

〈ψi |∇RI H|ψi 〉 (18)

where RI and FRI are the position and force of Ith ion. With RI

and FRI , we invoke the Ehrenfest theorem for the equation of
ionic motion:

MI
d2RI

dt2
= FRI (19)

which recovers Newton’s second law of motion for the ionic de-
grees of freedom.
Then, only some unique methods for analysis are introduced

as follows. First of all, the state-to-state transition probabilities
can be calculated by[32]

Pnn′k = |Cnn′k|2 = |〈vnk|Sk|un′k〉|2 (20)
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where vnk is the adiabatic basis

Hk

∣∣vnk(r)〉 = EnkSk
∣∣vnk(r)〉 (21)

The population qnk of adiabatic state nk is thus projected from
TDKS orbitals as

qnk =
∑

n′∈nk,occ
qn′kPnn′k (22)

nk,occ is occupied state at k point.
Technically, n loops over all adiabatic states, which has the

same dimension No as NAOs. Assuming that Nocc is the num-
ber of occupied TDKS states, then the computational cost is up to
NoccO(N2

o ). The calculation is very time consuming, and parallel
computation is thus essential. In the first place, diagonalization
of Hk in Equation (21) is carried out by ScaLAPACK and all vnk(r)
are broadcasted to all nodes. Furthermore, the occupied TDKS or-
bitals un′k are distributed equally by all the computing nodes, and
each node only evaluates Equation (20) with local TDKS orbitals.
Secondly, different response functions are employed. For

finite-size structures, we calculate time-dependent dipole mo-
ment in the direction perpendicular to the vacuum layer,

D =
∫

ρ(r)rdr (23)

where ρ(r) is charge density. However, for periodic systems,
dipole is ill-defined and the time-dependent current is computed,

j = −i
e�
m

∑
n

[〈unk|∇|unk〉 − 〈
u∗
nk|∇|u∗

nk

〉]
(24)

3. Some Examples Toward Simulating Realistic
Systems

We intent to develop our code focusing on light–matter inter-
actions as main application fields. Light-induced electron and
phonon dynamics can be handled efficiently for isolated and pe-
riodic systems. Up to now, we have employed the real-time local
basis TDDFT approach to investigate ultrafast dynamics in some
prototypical systems for important applications. In the following
section, several quintessential examples are introduced in detail.

3.1. Photoabsorption Spectra and Electron Dynamics
in Graphene Nanoribbons

Firstly, we use the present rt-TDDFT method to calculate the
photoabsorption properties of armchair graphene nanoribbons
(AGNRs) and to monitor the excitation mode with the k-point
resolution. For AGNRs,[33,34] there is a vacuum layer along the in-
plane direction perpendicular to the ribbon edge, and the laser
field in the length gauge is used. The intensity of optical absorp-
tion along μ ∈ (x, y, z) direction can be expressed as the imagi-
nary part of the dielectric function

Sμ(ω) = Im
{
αμ,μ(ω)

}
(25)

Figure 3. a) A schematic showing AGNRs under an external electric field
polarized along the ribbon width direction. b) Optical absorption spectra
of AGNRs in different widths.

where αμ,υ characterizes the response of dipole momentPμ(ω) to
the electric field Eυ (ω) in the frequency domain,

Pμ(ω) = αμ,υ (ω)Eυ (ω) (26)

In rt-TDDFT calculations, we apply the electric field Eυ (t)
to obtain the dipole moment Pμ(t) in time domain. Then the
Fourier transform is performed to obtain the polarizability in the
frequency domain,

αμ,υ (ω) =
∫
Pμ(t) exp(iωt)dt∫
Eυ (t) exp(iωt)dt

(27)

where Eυ (t) is chosen as a Heaviside step function,

E θ
υ (t) = E 0

υ

[
1− θ (t)

] =
{
E 0

υ
(t) t ≤ 0

0 t > 0
(28)

In the present work, Eυ (t) is applied along the direction
perpendicular to the ribbon edge (Figure 3a). The resonance ab-
sorption spectrum S(ω) is obtained in a board energy range from
infrared to ultraviolet (1–7 eV). For AGNRs with different widths,
the absorption spectra are shown in Figure 3b. We observe two
kinds of resonance peaks implying different excitation modes:
the visible and the higher energy light excitation modes, whose
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Figure 4. Momentum resolved excitation in the graphene nanoribbon (widthW = 4.83 Å) under two laser excitation modes. a) Profile of applied electric
field, where the frequency ω is set as 2.59 eV. b) Snapshot of electron population distribution at three selected moments. c,d) Same as (a) and (b) but
for a higher laser frequency with ω = 6.90 eV.

peak position are around 1–4 eV and 6–7 eV, respectively. An
obvious redshift and a clear convergence tendency occur for both
of two modes with the increasing width of ribbon (W), which
are in considerable agreement with the experimental data.[35,36]

For the higher energy excitation mode, the monotonous redshift
(from 6.7 eV for W = 6.064 Å to 5.6 eV for W = 60.36 Å) can
be extrapolated to a value close to the result on the π−π band
transition in monolayer graphene (MG) calculated by GW plus
Bethe–Salpeter equation (red dash line in Figure 3b).[37] It
implies that the evolution corresponds to the transition from ID
ANGRs band structures to 2D graphene band structures as the
ribbon width increases. However, for the mode in visible region,
the peaks will be broadened into an uniform absorption back-
ground when the ribbon width come to infinite, consistent with
the existence of the constant absorption in monolayer graphene
(light absorption πα = 2.3%).[38] In addition, the peak locations
remain the same under the impulse field strength E0 ranging
from 0.25 to 2.5 VÅ−1, implying these excitation modes are
robust.
To gain deeper information on the excitation dynamics, we

show the k resolved snapshots of electron population distribu-
tion during the visible light (Figure 4a) and high energy excitation
(Figure 4c). Red (blue) dots in Figure 4b,d denote the increase (de-
crease) of electron occupation, and the size represents the pop-
ulation of excited electrons and holes. For visible light mode,
the population is mainly distributed on some special k points,
showing a feature of single electron-hole excitations. While for
high energy mode, the excitation is distributed on almost all the
k points, showing a collective excitation behavior. These results
demonstrate that the present approach is accurate and efficient
in calculating and analyzing optical properties in complex nanos-
tructures.

Figure 5. Ultrafast charge transfer in MoS2/WS2 bilayer. a) Side view of
MoS2/WS2 bilayer. Green, red, yellow spheres represent Mo, W, and S
atoms, respectively. b,c) Hole transfer dynamics for MoS2/WS2 in two
stacking modes. The transfer lifetime is fitted by an exponential function.
The insets show the schematic atomic structures.

3.2. Ultrafast Charge Dynamics in MoS2/WS2 Heterojunction

Laser-induced interlayer ultrafast charge transfer plays a very
important role in determining both the speed and efficiency of
charge separation, which provides a new platform for optoelec-
tronic and photovoltaic applications.[39,40] Here, we use a model
MoS2/WS2 bilayer system (Figure 5a) as an example to show how
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the local-basis rt-TDDFTmethod can be employed tomonitor the
electronic dynamics in such a van der Waals heterostructure.[41]

By choosing the photon energy to match that of MoS2 bandgap,
electrons will be excited from the selected valence band and holes
are created in the MoS2 layer. Afterward, the holes will transfer
into the neighboring WS2 layer in the heterojunction. The time
evolution of interlayer charge transfer is simulated by simulta-
neously solving the time-dependent Kohn–Sham equation and
Newtonian motion of ions.
Our results show that a slight interlayer geometry modulation

of twisting, translation, or spacing can tune charge transfer dy-
namics very efficiently. As displayed in Figure 5b,c, both AB1-2H
and AA1-3R are the stable stacking configurations in MoS2/WS2
bilayer with the same interlayer distance (6.3 Å).[42,43] However,
to form the other configuration, one layer in the bilayer rotates by
an angle of π . We fit the time evolution data with an exponential
equation χ = a + b × exp(−t/τ ), where τ is the charge transfer
life time andχ is the hole (electron) density on theWS2 orbitals at
different times after photoexcitation. As marked in Figure 5b,c,
τAB1 and τAA1 are around 100 fs and 1000 fs, respectively, differing
by an order of magnitude in charge transfer timescale, despite
that the two configurations have a similar interlayer binding
energy.
Further analysis demonstrates that the interlayer charge trans-

fer is only related to the coupling between some specific inter-
layer states, in this case is the one between |−2〉 and |−1〉 states
at K point in the Brillouin zone. The dipole transition matrix ele-

mentsM = 〈−2| ∧
Z |−1〉 is used to evaluate the coupling strength

between the two states, where
∧
Z is the position operator along the

vertical direction normal to the MX2 plane. We found MAB1 �
MAA1 and the detailed analysis further reveals that 1/τ is expo-
nentially dependent onM, therefore, the distinct charge transfer
dynamics in above two stacking modes is understandable. Based
on these findings, one could utilize various methods to modulate
the interlayer geometry, and therefore the charge transfer quan-
tum dynamics can be controlled. This study will facilitate future
applications of 2D heterostructures in novel optoelectronic and
light harvesting devices.

3.3. Laser-Induced Nonthermal Melting

Laser excitation generates ultrafast phenomena and unique con-
densed phases of matter.[44] A popular example is ultrafast melt-
ing. Melting within a timescale of less than a picosecond upon
photoexcitation has been ubiquitously observed in a wide range
of semiconductors,[45–47] and, most recently, in 2Dmaterials such
as TiSe2[48] and TaS2.[49] Despite extensive experimental and the-
oretical investigations in the past four decades, the atomistic
mechanism of ultrafast melting remains controversial. Initiated
by this situation, we simulate laser melting of Si under experi-
mental conditions as shown in Figure 6.[46,50] Our simulations, by
combining local basis rt-TDDFT and molecular dynamics (MD)
approaches, explicitly show that ultrafast laser melting could oc-
cur at a temperature (600 K) significantly below the equilibrium
thermal melting temperature (�1700 K for Si), thus confirming
the nonthermal and nonequilibrium nature of laser melting for
the first time.

Figure 6. Schematic showing the atomic structure of silicon crystal a) be-
fore and b) after laser melting.

Figure 7. a) RMSD as a function of time. b) Simulated and experimental
electron diffraction intensity of (220) reflection as a function of time. Ex-
perimental data (time rescaled by a factor of 0.33) are taken from ref. [43].
c) Ionic temperature as a function of time.

We adopt the Lindemann criterion for judging the melting
of crystal lattice: silicon melts when its root-mean-square dis-
placement (RMSD) <u2(t)>

1
2 is larger than the critical value

Rc = 0.35 Å (15% of Si–Si bond length).[51] The RMSDs with and
without laser irradiation are shown in Figure 7a. Here we use the
percentage of valence electrons pumped to conduction bands to
denote the laser intensity η. The maximum RMSD without laser
(η = 0%) reaches only half of Rc . However, the RMSD with laser
intensity η = 10.16% crosses the Rc within 100 fs and keeps in-
creasing to about 0.6 Å at 400 fs, showing an evident ultrafast
melting behavior.
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Figure 8. The melting velocity vm (blue dots) and thermal velocity vt (red
line) as a function of ionic temperature.

The RMSD is directly connected to diffraction intensity I(t)
through the Debye–Waller formula:

I(t) = exp
[−Q2<u2(t)>/3

]
(29)

where Q is the reciprocal lattice vector of the probed reflection,
<u2(t)> is the mean square displacement, that is, the square of
RMSD. We simulate the Iη=10.16%(t) and Iη=0%(t) for the (220) re-
flection (Figure 7b). The features of the experimental data and our
simulations are almost identical. The Iη=11%(t) decreases to 0.2
after melting in both the experiment and our simulation, while
without laser, both the simulated and experimental curves show
no drift but an oscillation around 0.95. It demonstrates that our
simulation captures the most important features of nonthermal
melting observed in experiment. The only difference is that in our
simulation, the melting speed is even faster, possibly because of
the small supercell size used in the simulation and other compli-
cations in experiment including surface effects and a large pulse
width used (200 fs). We note that during the melting, the crystal
lattice remains cold (T< 600 K; Figure 7c), revealing an intrinsic
nonthermal melting.
The plasma annealing (PA) mechanism,[52] that is, plasma-

induced bondweakening, seems toworkwell to explain the above
results. The conventional PAmodel assumes that laser energy re-
tains in the electronic subsystem, thus ultrafast melting is purely
an electronic effect. However, we show that the PA is insuffi-
cient to fully understand ultrafast melting. The electron–phonon
(el–ph) energy transfer is important but neglected in PA. Dur-
ing melting, the loss in ion kinetic energy is compensated by
the energy transfer from electrons to ions via el–pl scattering.
The el–ph energy transfer leads to peculiar phenomena distinct
fromwhat PA predicts. Inertial dynamics, namely melting with a
constant ion velocity no less than average thermal velocity, is ex-
perimentally observed,[53] a direct evidence of el–ph energy trans-
fer. The inertial dynamics dictates vm ≥ vt, where vm is the melt-
ing velocity vm =  < u2(t) >

1
2 /t , and vt is thermal velocity

of ions vt = √
3kBT/M (M is the atomic mass). Inertial dynam-

ics is nicely reproduced in our simulations. The melting veloc-
ity vm and thermal velocity vt are shown in Figure 8. At an ini-

Figure 9. a) Schematic showing high harmonic generation under two-
color fields. b) The electric field, and c) the vector potential of four rep-
resentative laser pulses with different relative ratios.

tial ion temperature similar to experiment Ti = 300 K, vm < vt
shows a damped melting, consistent with the experiment.[46] It
can be explained by melting under a perturbed potential energy
surface (PES). However, when Ti decreases to a critical tempera-
ture Tc = 50K, there exists a crossover between vm and vt. Below
Tc, the inertial even accelerated melting dynamics is observed.
In PA model, upon laser excitation, ions either maintain their

thermal velocity vt (for flattened PES) or have a velocity smaller
than vt (for perturbed PES with a barrier) during melting, since
ionic kinetic energy is consumed to overcome themelting barrier.
This contradicts with the crossover between damped and inertial
dynamics observed in our simulation and experiment. We sug-
gest that laser-induced el–ph energy transfer, dominant at low
temperatures, is the key for the observed inertial dynamics.

3.4. High Harmonic Generation

Strong field laser excitation of solids can produce extremely non-
linear electronic and optical behaviors. One of the most funda-
mental and prominent aspects of nonlinear optics is higher-order
harmonic generation (HHG) in condensed matter systems,[54–56]

which is both a source of fundamental insight into electron mo-
tion and a promising new method to realize compact ultraviolet
and ultrafast light sources. However, applications of the HHG
are restricted by the low conversion efficiency, so enhancing the
yield of HHG becomes a valuable project. In our work, two-color
field is used to control the electron dynamic processes to enhance
HHG intensity in monolayer MoS2, as shown in Figure 9a. The
interaction of laser with MoS2 is calculated by solving the TDKS
equation (Equation (6)) in velocity gauge and the two-color laser
field is expressed to be a Gaussian envelop function:

E (t) = {
E1 sin(ω1t + ϕ1)+ E2 sin(ω2t + ϕ2)

}
× exp

[−(t − t0)2
/
2σ 2] (30)

r2 = E2/E1
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Figure 10. HHG spectra in the two-color fields with different relative in-
tensity. The length of arrows shows intensity differences Ii between the
benchmark (black dashed line) and higher order harmonics, in this case,
I1 > I2 > I3 > I4, which means that harmonic yields can be en-
hanced by properly-tuned two-color fields.

Here, Ei , ϕi , and ωi (i = 1, 2) are peak electric field, phase,
and frequency, respectively. The relative ratio of the two laser
pulse intensities is represent by r2. In our simulation, linearly
polarized laser is applied along the zigzag direction of mono-
layer MoS2 with E1 = 0.07 VÅ−1, ω2 = 1.5ω1 = 1/2Egap (Eg =
1.94 eV ), ϕi = 0, the pulse peak time t0 = 30 fs while the half
width is chosen to be σ = 8.5 fs. In Figure 9b,c, four representa-
tive laser pulses with different r2 are displayed. Once the time-
dependent current J(t) is available via Equations (7) and (24),
HHG spectrum can be accessed through Fourier transformation,

I(ω) =
∣∣∣∣
∫ T

0
ω2 J (t) exp(−iωt)dt

∣∣∣∣
2

(31)

The corresponding HHG spectra are displayed in Figure 10.
It is clear that the HHG spectrum is very sensitive to the
participation of the second laser pulse. More precisely, when the
peak intensity of the laser changes by only 40%, the yield of the
high order harmonic can be increased by 10–100 times in the
energy range of E > 10 eV. Meanwhile, by simply controlling the
amplitude ratio of the second beam to the first one, the cutoff of
the plateau region can be further extended, showing the possibil-
ity to generate isolated attosecond pulses.[57,58] The phenomena
can be attributed to the fact that larger vector potentials are
obtained when increasing r2 coherently. A larger magnitude of

the vector potential will increase electron transition probabilities
from valence bands to conduction bands. More electrons would
be excited and travel a larger fraction of the momentum space,
thus leading to a high intensity in the HHG spectrum.

4. Conclusion

In summary, we present an efficient real-time TDDFT ap-
proach for large scale accurate simulations of excited state dy-
namics. Both length-gauge and velocity-gauge electromagnetic
field have been implemented using numerical atomic orbitals
as basis, ensuring the flexibility and credibility to apply this
method to various laser-induced phenomena in diverse systems
including solids, interfaces, and low-dimensional materials. Fur-
thermore, recently developed momentum resolved algorithm
provides the possibility to treat these systems with a small sim-
ulation cell, which significantly reduces the formidable compu-
tational cost of conventional rt-TDDFT simulations. We show
several quintessential examples, including the photoabsorption
properties of graphene nanoribbons, ultrafast charge transfer
in MoS2/WS2 heterojunction, nonthermal melting of silicon, as
well as high harmonic generation from monolayer MoS2. Most
of these applications represent a new prospect in their respective
areas. We expect that the present approach could be extended to
broader fields and become part of the standard tools for physi-
cists, chemists, and materials scientists who are interested in
laser–matter interactions.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
C.L. and M.G. contributed equally to this work. This work is supported
by MOST (grants 2016YFA0300902 and 2015CB921001), NSFC (grants
11774396 and 11474328), and CAS (XDB07030100).

Conflict of Interest
The authors declare no conflict of interest.

Keywords
k-resolved algorithm, length and velocity-gauge, local atomic basis, real-
time TDDFT

Published online:

[1] E. Runge, E. K. Gross, Phys. Rev. Lett. 1984, 52, 997.
[2] C. A. Ullrich, Time-Dependent Density-Functional Theory: Concepts and

Applications, Oxford University Press, Oxford 2011.
[3] S. Sato, K. Yabana, Y. Shinohara, T. Otobe, K. M. Lee, G. Bertsch, Phys.

Rev. B 2015, 92, 205413.

Adv. Theory Simul. 2018, 1800055 C© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1800055 (9 of 10)



www.advancedsciencenews.com www.advtheorysimul.com

[4] D. Sánchez-Portal, E. Hernandez, Phys. Rev. B 2002, 66, 235415.
[5] Y. Takimoto, F. Vila, J. Rehr, J. Chem. Phys. 2007, 127, 154114.
[6] K. Lopata, N. Govind, J. Chem. Theory Comput. 2011, 7, 1344.
[7] A. Castro, J. Werschnik, E. K. Gross, Phys. Rev. Lett. 2012, 109, 153603.
[8] K. Yabana, T. Sugiyama, Y. Shinohara, T. Otobe, G. Bertsch, Phys. Rev.

B 2012, 85, 045134.
[9] N. Tancogne-Dejean, O. D. Mucke, F. X. Kartner, A. Rubio, Phys. Rev.

Lett. 2017, 118, 087403.
[10] T. T. N. Yoshikawa, K. Tanaka, Science 2017, 356, 736.
[11] U. De Giovannini, D. Varsano, M. A. L. Marques, H. Appel, E. K. U.

Gross, A. Rubio, Phys. Rev. A 2012, 85, 062515.
[12] X. Andrade, D. Strubbe, U. DeGiovannini, A. H. Larsen,M. J. Oliveira,

J. Alberdi-Rodriguez, A. Varas, I. Theophilou, N. Helbig, M. J. Ver-
straete, Phys. Chem. Chem. Phys. 2015, 17, 31371.

[13] S. A. Sato, K. Yabana, J. Adv. Simulat. Sci. Eng. 2014, 1, 98.
[14] X. Andrade, J. Alberdi-Rodriguez, D. A. Strubbe, M. J. Oliveira, F.

Nogueira, A. Castro, J. Muguerza, A. Arruabarrena, S. G. Louie, A.
Aspuru-Guzik, J. Phys. Condens. Matter 2012, 24, 233202.

[15] M. Noda, S. A. Sato, Y. Hirokawa, M. Uemoto, T. Takeuchi, S. Ya-
mada, A. Yamada, Y. Shinohara, M. Yamaguchi, K. Iida, arXiv preprint
arXiv:1804.01404, 2018.

[16] X.-M. Tong, G.Wachter, S. A. Sato, C. Lemell, K. Yabana, J. Burgdörfer,
Phys. Rev. A 2015, 92, 043422.

[17] K. Dewhurst, S. Sharma, L. Nordstrom, F. Cricchio, F. Bultmark, H.
Gross, C. Ambrosch-Draxl, C. Persson, C. Brouder, R. Armiento, ELK,
http://elk.sourceforge.net (accessed: May 2018).

[18] O. Sugino, Y. Miyamoto, Phys. Rev. B 1999, 59, 2579.
[19] S. Meng, E. Kaxiras, J. Chem. Phys. 2008, 129, 054110.
[20] W. Ma, J. Zhang, L. Yan, Y. Jiao, Y. Gao, S. Meng, Comp. Mater. Sci.

2016, 112, 478.
[21] C. Pemmaraju, F. Vila, J. Kas, S. Sato, J. Rehr, K. Yabana, D. Prender-

gast, Comp. Phys. Comm., 2018, 226, 30.
[22] L. Stojchevska, I. Vaskivskyi, T. Mertelj, P. Kusar, D. Svetin, S. Bra-

zovskii, D. Mihailovic, Science 2014, 344, 177.
[23] J. M. Soler, E. Artacho, J. D. Gale, A. Garćıa, J. Junquera, P. Ordejón,
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