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Laser picoscopy of valence electrons in 
solids

H. Lakhotia1,2,4, H. Y. Kim1,2,4, M. Zhan1,2, S. Hu3, S. Meng3 & E. Goulielmakis1,2 ✉

Valence electrons contribute a small fraction of the total electron density of materials, 
but they determine their essential chemical, electronic and optical properties. Strong 
laser fields can probe electrons in valence orbitals1–3 and their dynamics4–6 in the gas 
phase. Previous laser studies of solids have associated high-harmonic emission7–12 
with the spatial arrangement of atoms in the crystal lattice13,14 and have used terahertz 
fields to probe interatomic potential forces15. Yet the direct, picometre-scale imaging 
of valence electrons in solids has remained challenging. Here we show that intense 
optical fields interacting with crystalline solids could enable the imaging of valence 
electrons at the picometre scale. An intense laser field with a strength that is 
comparable to the fields keeping the valence electrons bound in crystals can induce 
quasi-free electron motion. The harmonics of the laser field emerging from the 
nonlinear scattering of the valence electrons by the crystal potential contain the 
critical information that enables picometre-scale, real-space mapping of the valence 
electron structure. We used high harmonics to reconstruct images of the valence 
potential and electron density in crystalline magnesium fluoride and calcium fluoride 
with a spatial resolution of about 26 picometres. Picometre-scale imaging of valence 
electrons could enable direct probing of the chemical, electronic, optical and 
topological properties of materials.

The generation of high harmonics in solids7–12 has led to numerous 
advances in strong-field condensed-matter physics. High harmonics in 
solids are primarily interpreted as the result of the nonlinear driving of 
electrons within and between bands16–20. High harmonics in solids are 
now used to probe the essential characteristics of solids, such as the 
band dispersion9,21,22, the topology13, the dynamic conductivity23 and 
the arrangement of atoms in the crystal lattice13,14. Yet, the direct imag-
ing of the valence electron potential and density of crystalline solids 
requires a description of light–matter interactions in solids within the 
framework of scattering24,25, as typically used in atomic-scale diffrac-
tion microscopies26.

It is now understood that laser fields can modify the electrostatic 
potential of solids and thereby be used to manipulate their electronic 
gaps and structure27–30, providing ample opportunities for optical engi-
neering of materials31,32. Yet, the interpretation of the interaction of a 
laser and crystal electrons, and the associated nonlinear emission of 
radiation, within the framework of scattering is more demanding. The 
laser fields should be sufficiently strong and fast to effectively supress 
the valence crystal potential so that it becomes a weak perturbation to 
the laser-driven motion of electrons. Ultrafast laser pulses33, which are 
capable of damage-free exposure of bulk solids at fields that exceed 
their static dielectric strength by many orders of magnitude7–14,23,34, 
could enable this possibility.

To better appreciate how a scattering regime could possibly emerge 
in the extreme nonlinear optics of solids, we consider the interaction 
of valence electrons in a crystal potential V r V( ) = ∑ ek k

ikr  with a laser 
field F(t) = F0sin(ωLt). Here k and Vk denote the reciprocal lattice vectors 

and the Fourier components of the crystal potential, respectively, r is 
the spatial coordinate and i is the imaginary unit. F0 and ωL denote the 
amplitude and frequency of the laser field, respectively, and t is time. 
Following earlier studies of atoms and solids27–29,35–39 and by expressing 
the time-dependent Schrodinger equation within the reference frame 
of the moving electron under the laser field, the total potential expe-
rienced by a valence electron can be formulated as27–29
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Here JN is the Bessel function of the first kind and order N. The first sum 
of terms in equation (1) is time independent and describes an effective 
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are modified by the laser field. This potential is analogous to the Kram-
mer–Henneberger potential in atomic physics35–39. The rest of the terms 
in equation (1) describe transitions (absorption and emission of pho-
tons at harmonic energies Nω of the fundamental field) among the 
states of the effective crystal potential36,37,39. Thus, the character of the 
optical interaction can now be intuitively understood in the framework 
of the effective potential Veff(r, F0) and its quantum states under the 
intense laser field F0.

The valence electrons can now be driven as quasi-free particles by 
an external laser27–29 when Veff(r, F0)  ≈  0. For the dominant 
reciprocal-space vector of a crystal (k = 2π/d, where d is the lattice 

constant), this implies that ( )J ≈ 0
kF

ω0
0

L
2  and suggests that for a typical 
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solid (d = 2–7 Å) exposed to an optical field (ħωL ≈ 2 eV), a quasi-free 
electron motion will emerge for fields in the range of 0.4–1.4 V Å−1, 
typically attainable in strong-field experiments in solids9,11,23,34.

Figure 1a (left) shows the modification of Veff(r, F0) in magnesium fluo-
ride (MgF2; right) along the [100] direction as calculated by an optical 
field (ħωL ≈ 2 eV) of gradually increasing F0. At low fields, F0 < 0.1 V Å−1, 
Veff(r, F0) (Fig. 1a, magenta curve) is nearly identical to that of the unper-
turbed crystal (Fig. 1a, black curve). The associated band structure 
(Fig. 1b, magenta curve) and the reduced effective mass of carriers μ 
in the crystal (Fig. 1c, magenta curve) hardly differ from those of the 
undressed solid (black curve in Fig. 1b).

At higher fields, the effective potential Veff(r, F0) is notably supressed 
(Fig. 1a, cyan and blue curves). The band structure (Fig. 1b, cyan and 
blue curves) and μ (Fig. 1c, cyan and blue lines) are now gradually 
approaching that of the free electron (grey dashed lines in Fig. 1b, c, 
respectively). At the critical field strength F0 ≈ 0.93 V Å−1 for which 

( )J ≈ 0
kF

ω0
0

L
2 , the crystal potential is totally suppressed (Fig. 1a, orange 

curve). Bandgaps (Fig. 1b, orange curve) are now coherently closing27–29, 
while the band dispersion (Fig. 1b, orange curve) and μ (Fig. 1c, orange 
curve) of the carriers in the crystal virtually match those of the free 

electron (grey dashed curves in Fig. 1b, c, respectively). For ever higher 
fields, the Veff(r, F0) revives (Fig. 1a, green curve), obeying the oscillatory 

nature of ( )J
kF

ω0
0

L
2 , versus field F0 (Fig. 1a). The reduced effective mass 

μ remains near that of the free electron (Fig. 1c, green line) for the best 
part of the Brillouin zone, but its sharp discontinuity at the edges is 
restored.

Figure 1 a–c clearly shows that the notion of quasi-free electron 
motion becomes plausible over a broad range of laser fields provided 
that the charge carriers in the crystal do not reach the edges of  
the Brillouin zone to experience a Bragg reflection. This implies  
that for the crystal momentum k(t) < π/d and for the optical field ampli-
tude F <

ω
d0

π L .
First-principle, time-dependent density functional theory (TDDFT) 

simulations in three dimensions (Fig. 1d) on crystalline MgF2 exposed 
to few-cycle pulses (ħωL ≈ 2 eV) with an electric field vector aligned with 
the [100] axis of the crystal support the above perspective (Methods). 
To allow an intuitive relation to Fig. 1 a–c, we calculated the velocity of 
the carriers in the bulk crystal νc(t) (see also Extended Data Fig. 1) and 
compared it with that of the free electrons νfree(t), exposed to identi-
cal waveforms and for a wide range of optical field strengths. As the 
reduced effective mass μ in the crystal is approximately related to the 
velocity ratio as νc(t)/νfree(t) ≈ 1/μ, this calculation allows us to place the 
perspective of Fig. 1 a–c under further scrutiny.

The ratio νc(t)/νfree(t), as evaluated at the maximum of νfree(t), is 
shown in Fig. 1d. For weak fields, this ratio reflects the inverse of the 
reduced effective mass of carriers 1/μ ≈ 0.94 around the Γ point of 
MgF2. For higher field strengths, the velocity of the crystal electrons 
rapidly increases and reaches that of the free electron at the critical 
field F0 ≈ 0.95 V Å−1 (Fig. 1c, orange curve). For a further increase of the 
optical field F0 > πωL/d (Fig. 1d), the simulations verify that electrons 
will experience Bragg reflection as manifested by the rapid drop in the 
carrier velocity in the crystal with respect to that of the free electrons.

Within the range of optical fields for which the crystal potential is 
considerably suppressed (Fig. 1a) and the band structure assumes a 
quasi-parabolic profile, the dynamics of the electronic wavefunction 
and concomitant emission of high harmonics may be treated within the 
framework of scattering and the motion of the electron in the potential 
can be described both classically24 and quantum mechanically25. For 
MgF2, this is further verified by comparing high-harmonic emission as 
described in these models with the results of the TDDFT simulations 
(Extended Data Fig. 2).

Within the scattering picture, the electric currents and emitted 
radiation are linked (Methods) to the valence periodic potential of 
the crystal as:
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where Ne is the number of electrons.
Extending to three dimensions (Methods), the intensity of the har-

monics that are collinearly polarized with the unit vector of the laser 
polarization (el) is linked with the periodic potential of the crystal as:

el ∑I F ω N V k J k
F

ω
( , , ) ∝ (3)N

k
k N0 L e l l

0

L
2

2

l
l

∼ 









where kl and Vkl

∼  are the projections of the reciprocal space vectors and 
the Fourier components of the potential, respectively, onto the laser 
polarization vector. In the coordinate space (Fig. 1a), this operation 
represents a one-dimensional (1D) slice of the potential of the crystal 
Vc(r), parallel to el, passing through the expectation value of the posi-
tion r0 of the initial electronic wavefunction within a unit cell. For crys-
tals with a centre(s) of symmetry (C), r0 coincides with this centre(s). 
Equation (3) also implies that by measuring a set of N harmonics for 
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Fig. 1 | Strong-field quasi-free electron motion in a crystal. a, Effective 
crystal potential of MgF2 along the [100] axis for intense optical (ħωL = 2 eV) 
fields of increasing strength (0.1–1.4 V Å−1). The field-free crystal potential is 
shown as a black curve. Green shaded areas indicate the valence electron cloud. 
EUV, extreme ultraviolet. b, c, The band structure (b) and reduced effective 
mass (c) as calculated for the three lowest bands and for the corresponding 
field strengths shown in a. The black curve in b and c denotes the band 
structure and effective mass of the undressed solid, respectively. Dashed lines 
in b and c represent the band dispersion and effective mass of free electrons, 
respectively. d, Ratio of the maximum of crystal (νc(t)) and free (νfree(t)) electron 
velocities along [100] direction of MgF2 crystal calculated by TDDFT as a 
function of field strength of the driving pulse with a carrier photon energy of 
2 eV. The blue curve and the grey dashed line are guides for the eye.
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various laser strengths F0, the Fourier components Vkl

∼  of a 1D slice 
(Fig. 1a, inset) of the crystal potential can be retrieved. As the intensity 
of every radiated harmonic of the field IN (equation (3)) is associated 
with a broad range of ∼Vkl

, the relative phase information—in contrast 
to linear techniques40—among ∼Vkl

 is not lost; it is rather embodied in 
the recorded intensities IN and thus can be also retrieved.

The highest radiated photon energy Ec (cut-off) and harmonic order 
Nc can now be estimated using the fact that the Bessel function in equa-
tion (3) reaches a maximum when its argument equals its order, Nc:

E N ω
k F

ω
= ≈ (4)c c L

max 0

L

Here, kmax is the highest significant (cut-off) reciprocal vector of the 
crystal potential Vc(r). As previously suggested24, equation (4) repre-
sents a clear analogy between the high-harmonic emission and the 
Smith–Purcell effect41, where the radiation energy is the product of 
velocity and spatial frequency. kmax is naturally associated with the 
valence radius rh of the smallest atom/ion in the system, as kmax ≈ 2π/rh. 

Therefore, the cut-off law can also be also expressed as E ≈
F

r ωc
2π 0

h
L

, sug-

gesting that within the scattering approximation, the dimensions of 
the smallest atomic or ionic radii in a crystal are directly linked to the 
cut-off energy and thus can be probed by measuring the cut-off energy 
as:

r
F

E ω
≈

2π
(5)h 0

c L

Probing the ion/atomic radii in solids
In a first set of experiments, we interrogate the validity of the scat-
tering picture by examining the possibility of probing the smallest 
ionic/covalent radii of atoms in solids with a sole measurement of the 
high-harmonic cut-off energy, as suggested by equation (5). In the 
experiments summarized in Fig. 2a, strong (F0 = 0.4–0.7 V Å−1), few-cycle 
pulses (duration of about 5.5 fs) carried in the visible (ħωL ≈ 2 eV) gen-
erated harmonics in MgF2 and other crystalline solids (Methods). The 
properties of the driving pulses—including the peak electric field F0 
and centroid carrier frequency ωL—in these experiments are accessed 
by attosecond streaking42. Representative harmonic spectra recorded 
in MgF2 when the laser polarization vector is aligned with the [110] 
and [100] crystal axes are shown in Fig. 2b. For MgF2, we record the 
cut-off energy Ec as a function of the optical field strength F0 (Fig. 2c, 
black dots). We evaluate the corresponding slope of Ec versus the field 
strength F0 in Fig. 2c (blue line) and derive the radius (equation (5)) as 
rh = 59 ± 4 pm. This result reasonably agrees with the empirical radius43 
of Mg+2 in MgF2 (about 72 pm) and lies far from the corresponding radius 
of the much larger F− (about 130 pm). To interrogate the character of 
these findings more generally, we extended the measurements to sev-
eral crystalline materials, as summarized in Fig. 2d. The radii evaluated 
from these measurements (Fig. 2d, blue bars) once again agree well 
with the empirical predictions (Fig. 2d, red bars) and suggest that the 
scattering model is applicable in these systems.

Mapping of the crystal potential and electron density 
in MgF2 and CaF2

In a next set of experiments, we set the laser polarization parallel to a 
specific crystal direction by rotating the crystal (Fig. 2a) and recorded 
the harmonic yield IN versus F0 and the crystal angle (Extended Data 
Fig. 3). For the [110] and [100] crystal axes of MgF2, the recorded  
harmonic yields are shown in Fig. 3a, b, respectively. An excellent fit 
(Methods) of the experimental data (red and blue curves in Fig. 3a, b, 
respectively) using equation  (3) is obtained for all harmonics.  
The retrieved amplitudes and phases of ∼Vkl

 are shown in Fig. 3c, d,  
respectively.

The inverse Fourier transform of these data yields the reconstructed, 
real-space potential shown in Fig. 4a, b. A measurement (Methods) 
along the [110] axis provides a 1D slice of the crystal potential along a 
line defined by the crystal symmetry point and the laser polarization 
vector el. In MgF2, this implies probing of the crystal potential along 
F–Mg–F axis on plane (002) (Fig. 3a). Indeed, the retrieved potential 
slice (Fig. 4a) is composed of three consecutive valleys, which can intui-
tively be assigned to the F−, Mg+2 and F− ion potentials, respectively. Yet, 
because a second symmetry point (C2) of MgF2 is located on plane (001), 
an additional 1D potential slice (along a line defined by C2 and the laser 
polarization vector el) contributes to the measurement. The addition of 
these two 1D potential slices practically results in the duplication of the 
Mg+2 contribution on the measured potential curve of Fig. 4a. Along the 
[100] axis (Fig. 4b), the potential consists of a single valley that can be 
primarily assigned to an Mg+2 ion on plane (001) plus that from an Mg+2 
ion on plane (002). A weak contribution from the spatially extended 
F− ions is also anticipated (Fig. 4b, top) and results in the broadening 
of the Mg+2 peak (Fig. 4b, blue curve).

On the basis of the data in Fig. 4a, b, as well as additional data retrieved 
for the intermediate crystal direction [120], we reconstruct the full ‘on 
plane’ potential of MgF2, as shown in Fig. 4c (Methods). We also evalu-
ate the corresponding valence electron density n(r) on the basis of the 
Thomas–Fermi approximation as n r V r( ) ∝ ( )3/2, shown in Fig. 4d. The 
potential and electron density data in Fig. 4c, d indicate that the Mg–F 
‘molecular pattern’ exhibits a four-fold rotational symmetry, compat-
ible with the notion of ‘simultaneous’ probing of crystal planes carry-
ing symmetry points. This aspect is further supported by the 
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simulations of Fig. 4e, which show the electron density resulting from 
the addition of the densities of planes (001) and (002) laterally shifted 
so that the symmetry points (Mg+2) in each plane coincide.

The reconstructed images of the valence electrons in Fig. 4c, d 
enable the visualization of the atomic-scale, electronic properties of 
MgF2. The electron radius of Mg+2 can now be directly deduced  
from the electron density curve (Fig. 4f)—as rMg

h
+2 ≈ 76 pm, which 

matches the empirical radius of Mg+2 (about 72 pm) with better  
accuracy compared with the estimative measurements based on the 
cut-off method (Fig. 2c). We also evaluate the corresponding radius 
of F− as rF

h
− ≈ 126 pm, which is also in agreement with the empirical data 

(about 130 pm).
The direct measurement of the valence electron structure in solids 

with picometre accuracy in these systems enables a direct comparison 
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of experimental and rigorously calculated quantum mechanical quan-
tities. The electron radius, which is often associated with essential 
properties of materials such as the polarizability and diamagnetic 
susceptibility, is defined as the principal maximum (rmax) of the radial 
density distribution function44. Evaluations of rmax from the retrieved 
data for each ion in Fig. 4f yielded rMg

max
+2 ≈ 30 pm and rF

max
−  ≈ 48 pm. Once 

again, these values closely match the theoretically calculated radii of 
27 pm and 44 pm for Mg+2 and F−, respectively44. We further bench-
marked the capability of laser picoscopy to image the valence electronic 
structure by extending our experimental study to a system with a rather 
different crystalline structure: calcium fluoride (CaF2, fluorite) (Meth-
ods, Extended Data Figs. 4–6).

An inspection of the reconstructed potential and/or electron density 
distributions in the two studied systems provides information on the 
nature of chemical bonding. In particular, the considerable differences 
in the evaluated radii of the crystal ions compared with those of neu-
tral atoms (Mg, 167 pm; F, 41 pm; Ca, 275 pm)45 is compatible with the 
electron transfer from Mg and Ca to F, (Fig. 4d, Extended Data Fig. 5e, 
respectively) occurring during the chemical bond formation. Moreover, 
in MgF2, the weak potential (Fig. 4c) and electron density (Fig. 4d) in 
the interstitial space between anions and cations is compatible with 
the ionic character of the underlying chemical bond.

The spatial resolution attained with laser picoscopy may be directly 
inferred from the highest reciprocal space vectors kmax, which are sub-
stantial in the fitting of the corresponding intensity yields in Fig. 3c, 
d. For example, measurements along the [100] axis of MgF2 yielded 
kmax = 12.2 Å−1, suggesting a spatial resolution of about 26 pm, that is, 
approximately half of the Bohr radius in atomic hydrogen.

Direct imaging of valence electrons in bulk solids with picometre reso-
lution may broaden the scope of modern, atomic-scale microscopy to 
include direct access to the chemical, electronic and topological properties 
of matter. Future experiments, including these in other spectral ranges of 
the driving field and detailed examination and extension of the theoreti-
cal premises of picoscopy, will be required to verify the applicability of 
the technique to a broader range of materials. Laser picoscopy is readily 
incorporable with time-resolved spectroscopies and could enable the 
tracking of simultaneously unfolding atomic and valence electron dynam-
ics with picometre and attosecond resolution. It may also enable a route 
to the detailed understanding of the phase transition dynamics of matter.
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Methods
DFT and TDDFT simulations in MgF2

The time-dependent simulations were performed using the 
time-dependent ab initio package (TDAP)46,47 within the framework of 
DFT and TDDFT48. First, the laser–matter interaction was included in 
the Hamiltonian to simulate the effect of external laser field: 

( )H ħ k A t Vˆ = , ˆ, − , , ˆ,( ) + ˆ
m

e
c c

1
2

2
, where m, e and k are the electron mass, 

charge and momentum, respectively, Vc is the periodic potential of the 
crystal and ∫A t c E t tˆ( ) = − (̂ )d  (ref. 49) is the vector potential of the driv-
ing pulse. c is the speed of light. The time-dependent Kohn–Sham equa-
tion (TDKS) was propagated in real time, where the propagator 
operator is expressed within the Crank–Nicolson scheme46,50. Then, 
the TDKS orbitals ψG,k,σ(t) as well as the time-dependent charge density 
ρ(r, t) were obtained at each timestep. The time-dependent electron 
velocity νG,k,σ(t) was calculated from the TDKS orbitals:

∑ν t i ψ t ψ t ψ t ψ t( ) = − ( ) ∇ ( ) − ( ) ∇ ( )* (6)G k σ
i

i G k σ i G k σ i G k σ i G k σ, , , , , , , , , , , , , ,






where i labels the state index and G, k and σ are the planewave-basis, k 
point and spin index, respectively. We derive the total electron veloc-
ity as:

∑ν t
V

ν t( ) =
1

( ) (7)
G k σ

G k σ
cell , ,

, ,

where Vcell is the volume of the unit cell. More details about the algorithm 
can be find in refs. 46,47. The velocity of the free electron was trivially 
obtained from the vector potential A(t) as: ν(t)free = ħA(t)/m, where m 
is the free electron mass. In the calculations, we considered laser pulses 
with the characteristics of those used in the experiments. We used 
norm-conserving pseudopotentials with the Perdew–Burke–Ernzerhof 
functional51. To reduce the computation time, we opted for the numer-
ical atomic orbitals as well as an auxiliary real-space grid equivalent to 
a planewave cut-off of 150 Rydberg. The k-points sampling was 6 × 6 × 9. 
The evolution of the system was calculated by self-consistently prop-
agating the electron density and the results are convergent with 
timesteps from 2 to 20 as.

To obtain the valence electron density and electrical potential, the 
SIESTA DFT package52 was used with the PBE51 functional and numeri-
cal atomic orbitals basis set. For sampling, 12 × 12 × 18 points in 3D 
k-space were used, and a density matrix was calculated to obtain the 
electron density. The reduced effective mass in MgF2 was estimated 
on the basis of two valence and two conduction bands within the same 
DFT code.

High-harmonic generation in the semi-classical limit
The emission of harmonics from a solid driven by an intense laser field 
FL(t) = F0sin(ωLt)el is associated with rate of change of the induced cur-
rent in its bulk. Under conditions for which the crystal potential is 
softened by the intense field and the corresponding band structure, 
in turn, becomes a quasi-parabolic profile as presented in the main 
text, the kinematics of the electrons can be treated semi-classically by 
introducing the limit53 r rV t V t∇ ( ( )) ≈ ∇ (⟨ ( )⟩)c c . In this limit, the current 
variation in time is governed by the classical equation of motion accord-
ing to the Ehrenfest theorem.

J r r
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∂

∂
( ) ∝ − ∇ ( ( )) ≈ − ∇ (⟨ ( )⟩) (8)e c e c

V t(⟨ ( )⟩)c r  in this case represents the potential of Ne valence electrons in 
the crystal, and r⟨ ⟩t( )  stands for the classical expectation value of the 
position of the wavepacket within a unit cell of a crystal following the 

electric field of the laser as r⟨ ⟩t( )  =  r
F( )ω t+ sin( )
ω00 L

00

L
2 . r0 is the expecta-

tion value of the initial position of the electron wavefunction within a 

unit cell. The periodic potential can now be expressed in terms of its 
Fourier coefficients r k k
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The exponential term in the above equation can be further expanded 
using the Jacobi–Anger expansion. The real part of t( )t

∂
∂ J  can be decom-

posed into odd and even terms such as:
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where JN is the Bessel function of the first kind and order N, and Re(Vk) 
and Im(Vk) are the real and the imaginary parts of Vk. The intensity IN 
of a radiated harmonic of order N as a function of the field strength F0 
and driving frequency ωL is given by a square modulus of the Fourier 
transform of the rate of change of the total current. In the experiments 
presented here, only centrosymmetric crystals were used (Im(Vk) = 0), 
hence only odd harmonics are relevant. The intensity IN of the odd 
harmonics can be further decomposed into components parallel (el) 
and perpendicular e( )⊥  to the laser polarization vector:
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Notably, the results of equations (12) and (13) closely match those of 
previous studies that treated the problem classically24 or quantum 
mechanically25.

All the factors except Vk inside the summation in equation (12) 
depend on k through k·el. This fact is used to split the summation into 
two parts, one in the direction of laser polarization (el) and other per-
pendicular to it e( )⊥ . The summation of the Fourier coefficients of the 
potential Vk in the perpendicular direction e( )⊥  is given as:

k
k kl

∑V V= (14)k +
⊥

l ⊥

∼

where k k kl= + ⊥ such that kl = k·el and k = ⋅⊥ ⊥k e  are the projection of 
reciprocal space vector in the direction parallel and perpendicular  
to laser polarization, respectively. According to the Fourier slice  
theorem54, the Fourier transform of Vkl

∼  represents a 1D slice of the potential  
in the el direction, passing through the origin r0. Hence, the emitted 
radiation IN(F0, ωL, el) is associated with the motion of the electron along 
this slice. In this case, equation (12) is reduced to a scalar form:
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An important implication of the scattering approximation as suggested 
by the derivations summarized in equation (15) or equation (3) is that, 
as the valence electron cloud, in the entire volume of the unit cell, can 
be considered free to move under the driving field, its dynamics can 
be described by the temporal evolution of the expectation value of the 



wavefunction r(t) (single-point dynamics). The weak perturbation from 
the crystal potential to the electron-cloud motion induces coherent 
currents and consequentially harmonic radiation. Harmonic yields 
calculated by TDDFT and the scattering model are in a good agreement 
(Extended Data Fig. 2).

Experimental
MgF2, MgO, CaF2, SiO2, ZnO and diamond crystals with thickness of 
about 2 μm or less were placed in a vacuum chamber and were exposed 
to few-cycle (about 5.5 fs) pulses carried at about 2 eV. The pulses were 
produced by a second-generation light-field synthesizer55. The field 
strength F0 of the laser pulses on the sample was varied by a precisely 
adjustable aperture. The detailed field waveform (including the ampli-
tude F0 and the carrier frequency ωL) of the pulses was measured using 
attosecond streaking42. The vacuum ultraviolet (VUV) radiation emerg-
ing from the sample was polarization-filtered by reflection off two 
rhodium-coated concave mirrors placed at a quasi-grazing incidence 
(about 78°) as well as a flat-field VUV grating (about 75°). The intensity 
of the perpendicular polarized ( )⊥e  component of the emitted high 
harmonics was suppressed by a factor of about 20 compared with the 
parallel polarized component (el). The grating was also used to disperse 
the harmonic spectrum on a microchannel plate-phosphor screen 
detector. A high-dynamic-range charge-coupled device camera 
recorded images of high-harmonic spectra versus the driving field 
strength and the crystal angle. Cut-offs in all measurements were 
defined as the last harmonic energy detectable by our detection system. 
Owing to a strong contamination of the fifth harmonic signal by 
second-order diffractions of the grating, its intensity dependence has 
been omitted in the potential reconstruction of MgF2.

Reconstructing 1D slices of the crystal potential
The intensity yields IN of the recorded harmonics versus driving field 
amplitude F0 were used to retrieve the amplitudes and phases of the 
Fourier coefficients of the 1D slice of the crystal potential as described 
by equation (15) or equation (3). As in this first study we are interested 
in the relative amplitudes and phases among these coefficients, the 
intensity yields of all harmonics were normalized to unity. This step 
is essential in the reconstruction process as it prevents artefacts that 
relate to the accurate knowledge of the relative yields of harmonics. 
The latter can be affected by the transmission of the specimen and 
the intensity calibration of the detection system—especially over the 
extended spectral ranges of study.

A least-squares fitting algorithm (Levenberg–Marquardt) was used to 
fit the experimental data within MATLAB R2016b. The fitting converged 
rapidly and yielded a regression better than 3%. The linear slices of the 
potential resulting from the inverse Fourier transform of the projected 
coefficients are plotted in arbitrary amplitude units.

Strictly, equation (15) or equation (3) are accurate for a monochro-
matic light field. In the case of a pulsed driving field, the equation of 
motion for the total current can expressed as
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where FL(t) denotes the field waveform of the driving pulse. Harmonic 
spectra calculated directly by equation (16) are shown in Extended Data 
Fig. 2b. A complete reconstruction of the Fourier coefficients can also 
be achieved using the above formula with FL(t) being the experimen-
tally measured electric field waveform. Yet for electric field strengths 
up to about 1.2 V Å−1, the analytical form remains accurate under an 
adjustment of the field amplitude F0N used in the reconstruction of 
the intensities for each harmonic N as




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


F F

N
N

=
π

2
erf

1
(17)N0 0

where F0 is the peak field strength of the driving pulse. In this case, the 
use of the quasi-analytic formulas in the main text allows a broader 
applicability of the technique proposed and implemented here and 
can also be applied in experimental facilities where a field-resolved 
characterization of light waveforms is not currently available.

Scattering picture and crystallography
For crystals with the rutile-structure MgF2 in our study, the expecta-
tion value of the initial wavefunction coincides with the symmetry 
points of the crystal, which are the Mg+2 ions (marked as C1 and C2) on 
planes (001) and (002) (Fig. 3a, b, insets). As a result, when the polari-
zation vector of the laser is, for example aligned with the [100] axis of 
MgF2, the 1D slice of the potential probed will be on a line defined by 
the symmetry point (C1) and laser polarization vector plus a 1D slice 
of the potential on a line defined by the symmetry point (C2) and the 
laser polarization vector. Correspondingly, when the 2D potential on 
a plane is reconstructed, we anticipate that it will represent the addi-
tion of the two parallel planes on which the symmetry points lie, that 
is, (001) and (002), shifted so that the symmetry centres coincide. This 
perspective is supported by the experimental results for the potential 
in Fig. 4c, which indeed represent the addition of the potentials on 
the two planes. For the CaF2 experiments, the symmetry point of the 
crystal (marked as C) lies exclusively on the (002) plane as shown in 
Extended Data Fig. 5a. As a result, laser picoscopy probes only a single 
plane (Extended Data Fig. 5e).

Reconstructing the potential on a plane
The reconstruction of the potential on a plane requires information on 
the properties of the lattice. The MgF2 crystal has a square lattice when 
seen from the c axis, the axis through which the laser impinges on the 
crystal in our experiments (Fig. 3a, b, insets). Although this informa-
tion can be acquired from X-ray crystallography, laser picoscopy is 
independent from this information. Indeed, the lattice symmetries can 
be directly inferred by the angular dependence of the high-harmonic 
intensity yield as a function of the rotation of the crystal with respect 
to the c axis (Extended Data Fig. 4). This feature of high harmonics has 
been repeatedly demonstrated in previous studies7,8,13. The 90° sym-
metry of these data directly suggests a square lattice.

A 2D potential slice U(x, y) of a unit cell with a lattice constant d can 
be expanded in Fourier series as: ZU x y u( , ) = ∑ e elm lm

i lx i my
∈ d d

2π 2π
, where 

ulm is the 2D Fourier coefficient of index l, and m and Z denote integer 
numbers. To reconstruct a 2D picture of the potential, we need to iden-
tify ulm. In our experiments, the Fourier coefficients of the 1D slice of 
the potential V( )kl

∼  along the characteristic crystal directions [100], [110] 
and [120] were first reconstructed. As described earlier, these Fourier 
coefficients are the projections of ulm along the respective crystal direc-
tions. This fact is used to create a system of linear equations, which are 
in turn solved to obtain the amplitudes and phases of ulm. Importantly, 
the symmetries of crystals give rise to numerous linear constraints, 
which reduce the number of unique unknowns of ulm and simplify the 
problem dramatically. In this study, the system of equations was solved 
by a standard linear least square fitting method. The accuracy of the 
reconstruction depends on the number of unique 1D slices used to 
derive the 2D potential. To plot the 2D slice of the potential (Fig. 4c, 
Extended Data Fig. 5d), we kept all Fourier coefficients up to the seventh 
order implying a resolution of about 90 pm. Yet a more advanced imple-
mentation of this approach using several 1D potential slices acquired 
at different angles can restore the full resolution, which is currently 
available in the 1D measurements of the potentials as shown in the main 
text (about 26 pm).

Although in the current implementation of the technique the poten-
tials in each slice are retrieved independently, two essential features 
of our approach allow their accurate combination to create 2D slices—
and eventually 3D images—of the structure. The first is related to the 
fact that all reconstructed linear slices are centred around the same 
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symmetry point of the crystal, or alternatively, the symmetry centre 
(expectation value of the position) of the crystal wavefunction within 
a unit cell. This implies that arbitrary phase shifts of the 1D potentials, 
before combining the data in a 2D picture, are not required. Second, 
although the 1D potential slices are reconstructed separately by the 
fitting of the normalized intensity harmonic yields, their relative ampli-
tude can still be calibrated based on the variation of the harmonic yield 
in each direction. In the current implementation, the intensity yield of 
the lowest harmonic (third) was used to this end.

Reconstruction of valence potential and electron density of CaF2

CaF2 is best represented56 by an expanded fcc lattice, composed of 
alternating layers of Ca and F atoms, as seen from the c axis (Extended 
Data Fig. 5a). A symmetry point (C in Extended Data Fig. 5a) of the crystal 
lies at the centre of the (002) (Ca plane). Therefore, we anticipate that 
in this crystal, laser picoscopy will be probing a single crystal plane—the 
Ca plane.

In the experiments, the pulses impinge on crystalline CaF2 along the 
c axis (Extended Data Fig. 5a, orange curve). One-dimensional potential 
slices reconstructed by recording the intensity yield of harmonics ver-
sus the field strength (Extended Data Fig. 4) along the [110] and [100] 
axes are shown in Extended Data Fig. 5b, c, respectively. The derived 2D 
potential and electron density slices (for the plane (002)) are shown in 
Extended Data Fig. 5d, e, respectively as well as in Extended Data Fig. 6.

Beyond the anticipated dominance of Ca+2 on plane (002), a notable 
contribution from F− ions (Extended Data Fig. 5b, d, e) centred on the 
(004) plane is also observed. This can be attributed to the extended 
size of the ionic radius of fluorine compared with the distance between 
the (004) and (002) planes in CaF2, as verified by DFT simulations 
(Extended Data Fig. 5f), and is suggestive of the high dynamic range 
provided by laser picoscopy. The radius, rmax for Ca2+ as evaluated by 
the experimentally derived electron density is r Ca

max
+2 ≈ 50 pm, in agree-

ment with the theoretical prediction44 of about 54 pm.
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Extended Data Fig. 1 | Strong field-driven electron dynamics in MgF2 
(ħωL = 2eV). a–c, Comparison of crystal (νc; blue curves) and free (νfree; red 
dashed curves) electron velocities along the [100] direction of an MgF2 crystal 

as calculated by TDDFT for laser field strengths F0 of 0.1 V Å−1 (a), 0.9 V Å−1 (b) 
and 2.0 V Å−1, and carrier at an energy of ħωL = 2eV.
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Extended Data Fig. 2 | High-harmonic generation in MgF2 (theory). 
High-harmonic spectra calculated by TDDFT simulations (red curve) and by  
use of the scattering model (blue curve) for laser parameters (ħωL = 2eV and  
F0 = 0.9 V Å−1) and crystal orientation settings as quoted in Fig. 1d.



Extended Data Fig. 3 | Crystal orientation dependence of high-harmonic 
generation in MgF2. The intensity of the third, ninth and thirteenth harmonics 
measured as a function of the crystal angle at field strengths (F0 = 0.58, 0.65 
and 0.7 V Å−1) of the driving pulse. The rotation of the crystal is performed with 
respect to the c axis. The azimuthal angle represents the orientation of the 

crystal with respect to the laser polarization and the radius represents the 
harmonic yield. The four-fold symmetry of the crystal suggests a square lattice. 
Error bars in the measured data indicate the standard deviation of the mean 
value from four measurements acquired under identical conditions.
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Extended Data Fig. 4 | Laser picoscopy in CaF2. a, Intensity yields of 
representative harmonics (N = 9, 11 and 13) in CaF2 measured as a function of the 
crystal rotation angle with respect to the c axis and for three representative 
driving field strengths (F0 = 0.58, 0.65 and 0.7 V Å−1). b, c, Intensity yields (black 
dots) of harmonics versus field strengths measured along the [110] (b) and 
[100] (c) axes of the crystal. The red and blue curves are the fitting of the 

intensity yields according to equation (18) or equation (3). Error bars in a–c 
indicate the standard deviation of the mean value from three measurements 
acquired under identical conditions. d, e, Retrieved amplitudes Vkl

∼
 and their 

relative phases (0 rad in blue and π rad in red) along the [110] (d) and [100] (e) 
axes of the crystal.



Extended Data Fig. 5 | Reconstruction of the valence electron potential and 
density of CaF2. a, Crystal structure of CaF2. The laser pulse (orange curve) 
impinges on the crystal along the c axis. The potential is probed along lines 
determined by laser polarization vectors (orange arrows) and the symmetry 
point C. b, c, Reconstructed 1D slices of the valence potential (blue curves) 
when the laser polarization vector is aligned with the [110] (b) and [100] (c) 

axes. Grey and cyan spheres represent F− and Ca2+, respectively, as aligned 
along the measurement line. d, Reconstructed 2D slice of the valence electron 
potential of CaF2 on the (002) plane. Bright spots represent Ca+2 ions and the 
light broad spots represent F− ions. e, Valence electron density evaluated from 
the data in d. f, DFT-calculated valence electron density of CaF2 on the (002) 
plane.
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Extended Data Fig. 6 | Electron density of CaF2 extended over multiple unit 
cells. Bright dots correspond to Ca+2 ions centred on (002) plane while the light 
dots correspond to F− ions centred on (004) plane but penetrating into the 
(002) plane.
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