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Valence electrons contribute a small fraction of the total electron density of materials,
but they determine their essential chemical, electronic and optical properties. Strong
laser fields can probe electrons in valence orbitals' and their dynamics*¢in the gas
phase. Previous laser studies of solids have associated high-harmonic emission’
with the spatial arrangement of atoms in the crystal lattice™* and have used terahertz
fields to probe interatomic potential forces®. Yet the direct, picometre-scale imaging
of'valence electrons in solids has remained challenging. Here we show that intense
opticalfields interacting with crystalline solids could enable the imaging of valence
electrons at the picometre scale. Anintense laser field with a strength that is
comparable to the fields keeping the valence electrons bound in crystals caninduce
quasi-free electron motion. The harmonics of the laser field emerging from the
nonlinear scattering of the valence electrons by the crystal potential contain the
criticalinformation that enables picometre-scale, real-space mapping of the valence
electron structure. We used high harmonics to reconstruct images of the valence
potential and electron density in crystalline magnesium fluoride and calcium fluoride
with a spatial resolution of about 26 picometres. Picometre-scale imaging of valence

electrons could enable direct probing of the chemical, electronic, optical and
topological properties of materials.

The generation of high harmonics in solids”*? has led to numerous
advancesin strong-field condensed-matter physics. High harmonicsin
solids are primarily interpreted as the result of the nonlinear driving of
electrons withinand between bands'®2°. High harmonics in solids are
now used to probe the essential characteristics of solids, such as the
band dispersion®*?, the topology®, the dynamic conductivity® and
thearrangement of atomsin the crystal lattice. Yet, the direct imag-
ing of the valence electron potential and density of crystalline solids
requiresadescription of light-matter interactions in solids within the
framework of scattering*%, as typically used in atomic-scale diffrac-
tion microscopies®.

Itis now understood that laser fields can modify the electrostatic
potential of solids and thereby be used to manipulate their electronic
gapsand structure?°, providing ample opportunities for optical engi-
neering of materials® Yet, the interpretation of the interaction of a
laser and crystal electrons, and the associated nonlinear emission of
radiation, within the framework of scattering is more demanding. The
laser fields should be sufficiently strong and fast to effectively supress
the valence crystal potential so that it becomes aweak perturbation to
thelaser-driven motion of electrons. Ultrafast laser pulses®, which are
capable of damage-free exposure of bulk solids at fields that exceed
their static dielectric strength by many orders of magnitude’ 3¢,
could enable this possibility.

Tobetter appreciate how ascattering regime could possibly emerge
in the extreme nonlinear optics of solids, we consider the interaction
of valence electrons in a crystal potential V(r) =} ; Vkei"’ with alaser
field F(¢) = Fosin(w, ). Here kand V, denote the reciprocal lattice vectors

and the Fourier components of the crystal potential, respectively, ris
the spatial coordinate and iis theimaginary unit. F,and w, denote the
amplitude and frequency of the laser field, respectively, and ¢ is time.
Following earlier studies of atoms and solids” **** and by expressing
the time-dependent Schrodinger equation within the reference frame
of the moving electron under the laser field, the total potential expe-
rienced by a valence electron can be formulated as? %

U(r,t)= Z Vido (kl:gjeikr + Z Viy (kngei(kr—Nth) (1)
k Wi )

N#0, k L

Here/yis the Bessel function of the first kind and order N. The first sum
oftermsinequation (1) istime independent and describes an effective

crystal potential Vi (r, F) = ¥, Vi J, (’@

ot

aremodified by the laser field. This potential is analogous to the Kram-
mer-Henneberger potential in atomic physics® . The rest of the terms
in equation (1) describe transitions (absorption and emission of pho-
tons at harmonic energies Nw of the fundamental field) among the
states of the effective crystal potential***>°, Thus, the character of the
optical interaction can now be intuitively understood in the framework
of the effective potential V«(r, F,) and its quantum states under the
intense laser field F,,

The valence electrons can now be driven as quasi-free particles by
an external laser”® when V (r, F,) = 0. For the dominant
reciprocal-space vector of a crystal (k= 2m/d, where d is the lattice
kFo

o}

) e'r, the properties of which

constant), thisimplies that J, ( ) = (0and suggests that foratypical
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Fig.1|Strong-field quasi-free electronmotioninacrystal. a, Effective
crystal potential of MgF, along the [100] axis for intense optical (7w, =2 eV)
fields ofincreasing strength (0.1-1.4 VA™). The field-free crystal potential is
shownasablack curve. Greenshaded areasindicate the valence electron cloud.
EUV, extreme ultraviolet. b, ¢, Theband structure (b) and reduced effective
mass (c) as calculated for the three lowest bands and for the corresponding
field strengths shownina. Theblack curveinband c denotes the band
structure and effective mass of the undressed solid, respectively. Dashed lines
inband crepresent the band dispersion and effective mass of free electrons,
respectively.d, Ratio of the maximum of crystal (v.(t)) and free (v¢..(t)) electron
velocitiesalong[100] direction of MgF, crystal calculated by TDDFT as a
function of field strength of the driving pulse with a carrier photon energy of
2eV.Thebluecurve andthe grey dashed line are guides for the eye.

solid (d=2-7 A) exposed to an optical field (hw, =2 eV), a quasi-free
electron motion will emerge for fields in the range of 0.4-1.4 VA,
typically attainable in strong-field experiments in solids®"?>3*,

Figure 1a (left) shows the modification of V g(r, F,,) in magnesium fluo-
ride (MgF,; right) along the [100] direction as calculated by an optical
field (hw, =2 eV) of gradually increasing F,. At low fields, F, < 0.1VA™,
V.ilr, Fo) (Fig.1a, magenta curve) is nearly identical to that of the unper-
turbed crystal (Fig. 1a, black curve). The associated band structure
(Fig. 1b, magenta curve) and the reduced effective mass of carriers u
in the crystal (Fig. 1c, magenta curve) hardly differ from those of the
undressed solid (black curve in Fig. 1b).

Athigher fields, the effective potential V,«(r, F,) is notably supressed
(Fig.1a, cyan and blue curves). The band structure (Fig. 1b, cyan and
blue curves) and u (Fig. 1c, cyan and blue lines) are now gradually
approaching that of the free electron (grey dashed lines in Fig. 1b, c,
respectively). At the critical field strength F, = 0.93 V A for which

Jo (’;Lf) = (, the crystal potentialis totally suppressed (Fig.1a, orange
curve). Bandgaps (Fig.1b, orange curve) are now coherently closing” %,
while theband dispersion (Fig.1b, orange curve) and u (Fig.1c, orange

curve) of the carriers in the crystal virtually match those of the free
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electron (grey dashed curvesinFig.1b, ¢, respectively). For ever higher
fields, the V «(r, F,) revives (Fig.1a, green curve), obeying the oscillatory

nature of J, (k@) versus field F, (Fig. 1a). The reduced effective mass

o
premains near that of the free electron (Fig.1c, greenline) for the best
part of the Brillouin zone, but its sharp discontinuity at the edges is
restored.

Figure 1a-cclearly shows that the notion of quasi-free electron
motion becomes plausible over abroad range of laser fields provided
that the charge carriers in the crystal do not reach the edges of
the Brillouin zone to experience a Bragg reflection. This implies
that for the crystalmomentum k(¢) </d and for the optical field ampli-
tude Fy< “2t,

First-principle, time-dependent density functional theory (TDDFT)
simulationsin three dimensions (Fig.1d) on crystalline MgF, exposed
tofew-cyclepulses (hw, =2 eV) with an electricfield vector aligned with
the[100] axis of the crystal support the above perspective (Methods).
Toallowanintuitive relation to Fig.1a-c, we calculated the velocity of
the carriersin the bulk crystal v.(¢) (see also Extended Data Fig.1) and
compared it with that of the free electrons vy (t), exposed to identi-
cal waveforms and for a wide range of optical field strengths. As the
reduced effective mass gin the crystal is approximately related to the
velocity ratio as v.(t)/vg..(t) =1/p, this calculation allows us to place the
perspective of Fig.1a—-c under further scrutiny.

The ratio v (t)/Vee.(t), as evaluated at the maximum of v (¢), is
shown in Fig. 1d. For weak fields, this ratio reflects the inverse of the
reduced effective mass of carriers 1/u = 0.94 around the I point of
MgF,. For higher field strengths, the velocity of the crystal electrons
rapidly increases and reaches that of the free electron at the critical
field F,=0.95V A7 (Fig. 1c, orange curve). For a further increase of the
optical field F, > tw,/d (Fig. 1d), the simulations verify that electrons
will experience Bragg reflection as manifested by the rapid drop in the
carrier velocity inthe crystal withrespect to that of the free electrons.

Within the range of optical fields for which the crystal potential is
considerably suppressed (Fig.1a) and the band structure assumes a
quasi-parabolic profile, the dynamics of the electronic wavefunction
and concomitant emission of high harmonics may be treated within the
framework of scattering and the motion of the electronin the potential
can be described both classically** and quantum mechanically?. For
MgF,, thisis further verified by comparing high-harmonic emission as
described in these models with the results of the TDDFT simulations
(Extended Data Fig. 2).

Within the scattering picture, the electric currents and emitted
radiation are linked (Methods) to the valence periodic potential of
the crystal as:

9 K-Fo | ivoye
3 Ne%kl/k %jN[ 0 ©))
where N, is the number of electrons.

Extending to three dimensions (Methods), the intensity of the har-
monics that are collinearly polarized with the unit vector of the laser
polarization (e is linked with the periodic potential of the crystal as:
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where k;and Vk, are the projections of the reciprocal space vectors and
the Fourier components of the potential, respectively, onto the laser
polarization vector. In the coordinate space (Fig. 1a), this operation
represents a one-dimensional (1D) slice of the potential of the crystal
V.(r), parallel to e, passing through the expectation value of the posi-
tionr,of theinitial electronic wavefunction within aunit cell For crys-
tals with a centre(s) of symmetry (C), r, coincides with this centre(s).
Equation (3) also implies that by measuring a set of N harmonics for



various laser strengths F,, the Fourier components l7k] ofalDslice
(Fig.1a, inset) of the crystal potential can beretrieved. As the intensity
of every radiated harmonic of the field /, (equation (3)) is associated
with abroad range ofl7kl, the relative phase information—in contrast
to linear techniques**—among qu isnot lost; it is rather embodied in
the recorded intensities /yand thus can be also retrieved.

The highest radiated photon energy E. (cut-off) and harmonic order
N.cannow be estimated using the fact that the Bessel functioninequa-
tion (3) reaches amaximum when its argument equals its order, N

Ec = Nch = M (4)
WL
Here, k., is the highest significant (cut-off) reciprocal vector of the
crystal potential V,(r). As previously suggested®, equation (4) repre-
sents a clear analogy between the high-harmonic emission and the
Smith-Purcell effect*, where the radiation energy is the product of
velocity and spatial frequency. k., is naturally associated with the
valenceradius r" of the smallest atom/ion in the system, as K., ~ 211/r".

Therefore, the cut-off law can also be also expressed as £, ~ -2, sug-
r o

gesting that within the scattering approximation, the dimensions of
the smallest atomic or ionic radii in a crystal are directly linked to the
cut-offenergy and thus can be probed by measuring the cut-offenergy
as:

h_ 2T
Ec(‘)L

&)

Probing theion/atomic radiiin solids

In afirst set of experiments, we interrogate the validity of the scat-
tering picture by examining the possibility of probing the smallest
ionic/covalent radii of atoms in solids with a sole measurement of the
high-harmonic cut-off energy, as suggested by equation (5). In the
experiments summarized in Fig. 2a, strong (F,=0.4-0.7V A™), few-cycle
pulses (duration of about 5.5 fs) carried in the visible (hw, =2 eV) gen-
erated harmonicsin MgF, and other crystalline solids (Methods). The
properties of the driving pulses—including the peak electric field F,
and centroid carrier frequency w,—in these experiments are accessed
by attosecond streaking*’. Representative harmonic spectrarecorded
in MgF, when the laser polarization vector is aligned with the [110]
and [100] crystal axes are shown in Fig. 2b. For MgF,, we record the
cut-off energy E. as a function of the optical field strength F, (Fig. 2c,
black dots). We evaluate the corresponding slope of E. versus the field
strength F,in Fig. 2c (blue line) and derive the radius (equation (5)) as
r"=59+4 pm. Thisresult reasonably agrees with the empirical radius*
of Mg in MgF, (about 72 pm) and lies far from the corresponding radius
of the much larger F~ (about 130 pm). To interrogate the character of
these findings more generally, we extended the measurements to sev-
eral crystalline materials, as summarized in Fig. 2d. The radii evaluated
from these measurements (Fig. 2d, blue bars) once again agree well
with the empirical predictions (Fig. 2d, red bars) and suggest that the
scattering model is applicable in these systems.

Mapping of the crystal potential and electron density
in MgF, and CaF,

In a next set of experiments, we set the laser polarization paralleltoa
specific crystal direction by rotating the crystal (Fig. 2a) and recorded
the harmonic yield /, versus F, and the crystal angle (Extended Data
Fig. 3). For the [110] and [100] crystal axes of MgF,, the recorded
harmonic yields are shown in Fig. 3a, b, respectively. An excellent fit
(Methods) of the experimental data (red and blue curves in Fig. 3a, b,
respectively) using equation (3) is obtained for all harmonics.
The retrieved amplitudes and phases of '71«. are shown in Fig. 3¢, d,
respectively.

Intensity (x10'® W cm?)

a (]
0.4 0.6 08 10 12 14
Few-cycle * ! * * * *
ulse
P 25
S
KX
>
=
£ 20
o =
o Q
Thin crystal sample 5 =59+ 4 pm
VUV radiation o
1’ MgF,
0.4 0.5 0.6 0.7
Electric field (V A-)
VUV polarizer 150
+ spectrometer e = oz "
b Harmonic order (N) Si si l’?n
r
7 3 5‘ ‘7 : 9 : 11 13 100+ Orm
= ; [ (—[1o] £ c c
> )~ | r -+ +:
2107 —100 [ T || o M| Ma
= MgF, | B
3 1 VIgF; 5]
Q. ! ] 50+
5107 i ‘ o«
2
B
51073
5

5 10 15 20 25
Energy (eV)

ZnO  SiO, MgF, MgO SiC Cg,ong
Fig.2|Probingoftheionic/covalentradius of atomsinsolids.

a, Experimental setup for laser picoscopy. 8 and ¢ denote the azimuthal angle
and polarangle, respectively. b, Harmonic spectragenerated in MgF, when the
laser polarization vector is aligned with the [110] (red curve) and [100] (blue
curve) axes of the crystal. ¢, High harmonic cut-offenergy E. (black dots) versus
drivingelectric fieldamplitude F, for the [110] axis of the crystal. The ionic
radius (r"=59 +4 pm) of Mg*?is evaluated by the slope of the data (blue line)
accordingto equation (5).d, Measured (blue bars) and empirical (red bars)
ionic/covalentradii of the smallestions/atoms (ry;°) in ZnO, SiO,, MgF,, MgO,
SiC and diamond crystals. The empirical valence radii of the largestions/atoms
(rr) ineach crystal (orange bars) are shown for comparison. Error bars indicate
the standard deviation of the mean value from three measurements acquired
underidentical conditions.

Theinverse Fourier transform of these datayields the reconstructed,
real-space potential shown in Fig. 4a, b. A measurement (Methods)
along the [110] axis provides a 1D slice of the crystal potential along a
line defined by the crystal symmetry point and the laser polarization
vector e;. In MgF,, this implies probing of the crystal potential along
F-Mg-F axis on plane (002) (Fig. 3a). Indeed, the retrieved potential
slice (Fig. 4a) is composed of three consecutive valleys, which can intui-
tively be assigned to the F, Mg and F~ion potentials, respectively. Yet,
because asecond symmetry point (C,) of MgF, is located on plane (001),
anadditional 1D potential slice (alongaline defined by C,and the laser
polarization vector e,) contributes to the measurement. The addition of
these two 1D potential slices practically resultsin the duplication of the
Mg* contribution on the measured potential curve of Fig. 4a. Along the
[100] axis (Fig. 4b), the potential consists of asingle valley that can be
primarily assigned to an Mg ion on plane (001) plus that from an Mg"
ion on plane (002). A weak contribution from the spatially extended
F~ions s also anticipated (Fig. 4b, top) and results in the broadening
of the Mg*? peak (Fig. 4b, blue curve).

OnthebasisofthedatainFig.4a, b, aswell as additional dataretrieved
for the intermediate crystal direction [120], we reconstruct the full ‘on
plane’ potential of MgF,, as shown in Fig. 4c (Methods). We also evalu-
atethe corresponding valence electron density n(r) onthe basis of the
Thomas-Fermi approximation as n(r) « V(r)*?, shown in Fig. 4d. The
potential and electron density datain Fig. 4c, d indicate that the Mg-F
‘molecular pattern’ exhibits afour-fold rotational symmetry, compat-
ible with the notion of ‘simultaneous’ probing of crystal planes carry-
ing symmetry points. This aspect is further supported by the
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Fig.3|Measurement of the Fourier coefficients of
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simulations of Fig. 4e, which show the electron density resulting from
the addition of the densities of planes (001) and (002) laterally shifted
so that the symmetry points (Mg'?) in each plane coincide.

The reconstructed images of the valence electrons in Fig. 4c, d
enable the visualization of the atomic-scale, electronic properties of
MgF,. The electron radius of Mg*? can now be directly deduced
from the electron density curve (Fig. 4f)—as rh ., =76 pm, which
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Fig.4|Reconstruction of the valence electron potential and density of
MgF,.a, b, Reconstructed 1D slices of the valence potential (blue curves) when
thelaser polarization vectoris aligned with the [110] (a) and [100] (b) axes. Grey
and orange spheresrepresent F-and Mg*ions, respectively, as aligned along
the probed line of the crystal. c, Areconstructed 2D slice of the valence
electron potential of MgF,. The Mg*?ionisin the centre, surrounded by F~ions.
d, Valenceelectrondensity derived from the datain c. e, DFT-simulated
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matches the empirical radius of Mg'? (about 72 pm) with better
accuracy compared with the estimative measurements based on the
cut-off method (Fig. 2c). We also evaluate the corresponding radius
of F"as r'} =126 pm, whichis alsoinagreement with the empirical data
(about 130 pm).

The direct measurement of the valence electron structure in solids
with picometre accuracy inthese systems enables a direct comparison
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electron density of MgF, summed over the (001) and (002) planes and shifted
such thatthe symmetry points (C;and C,as shownintheinsets of Fig.3a, b) on
boththe planes coincide.f, Electron density (green curve) along the F-Mg-F
axis of the MgF, crystal derived from the experimentally reconstructed valence
electron potential shownina. Black dashed linesindicate the evaluated ionic
radii (") and ("*) as defined in the text.



of experimental and rigorously calculated quantum mechanical quan-
tities. The electron radius, which is often associated with essential
properties of materials such as the polarizability and diamagnetic
susceptibility, is defined as the principal maximum (+™*) of the radial
density distribution function**. Evaluations of r™ from the retrieved
dataforeachioninFig.4fyielded rj~30 pmand rf® =48 pm.Once
again, these values closely match the theoretically calculated radii of
27 pmand 44 pm for Mg*? and F-, respectively**. We further bench-
marked the capability of laser picoscopy toimage the valence electronic
structure by extending our experimental study to asystemwith arather
different crystalline structure: calcium fluoride (CaF,, fluorite) (Meth-
ods, Extended Data Figs. 4-6).

Aninspectionofthe reconstructed potentialand/or electron density
distributionsin the two studied systems provides information on the
nature of chemical bonding. In particular, the considerable differences
in the evaluated radii of the crystal ions compared with those of neu-
tral atoms (Mg, 167 pm; F, 41 pm; Ca, 275 pm)* is compatible with the
electron transfer from Mg and CatoF, (Fig. 4d, Extended Data Fig. Se,
respectively) occurring during the chemical bond formation. Moreover,
in MgF,, the weak potential (Fig. 4c) and electron density (Fig. 4d) in
the interstitial space between anions and cations is compatible with
the ionic character of the underlying chemical bond.

The spatial resolution attained with laser picoscopy may be directly
inferred from the highest reciprocal space vectors k,,,,, which are sub-
stantial in the fitting of the corresponding intensity yields in Fig. 3c,
d. For example, measurements along the [100] axis of MgF, yielded
ko =12.2 A7, suggesting a spatial resolution of about 26 pm, that is,
approximately half of the Bohr radius in atomic hydrogen.

Directimaging of valence electrons in bulk solids with picometre reso-
lution may broaden the scope of modern, atomic-scale microscopy to
includedirectaccesstothe chemical, electronic and topological properties
of matter. Future experiments, including thesein other spectral ranges of
thedriving field and detailed examination and extension of the theoreti-
cal premises of picoscopy, will be required to verify the applicability of
the technique to a broader range of materials. Laser picoscopy is readily
incorporable with time-resolved spectroscopies and could enable the
tracking of simultaneously unfolding atomic and valence electron dynam-
ics with picometre and attosecond resolution. It may also enable aroute
tothedetailed understanding of the phase transition dynamics of matter.
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Methods

DFT and TDDFT simulations in MgF,

The time-dependent simulations were performed using the
time-dependent ab initio package (TDAP)***’ within the framework of
DFT and TDDFT*8, First, the laser-matter interaction was included in
the Hamiltonian to simulate the effect of external laser field:
A=5-(hk-, %,A,(t))2 + V., where m, e and k are the electron mass,
charge and momentum, respectively, V,is the periodic potential of the
crystaland A(¢) = - ch(t)dt(ref. ®)isthe vector potential of the driv-
ingpulse. cisthespeed of light. The time-dependent Kohn-Sham equa-
tion (TDKS) was propagated in real time, where the propagator
operator is expressed within the Crank-Nicolson scheme***. Then,
the TDKS orbitals ¢, ,(¢) as well as the time-dependent charge density
p(r, t) were obtained at each timestep. The time-dependent electron
velocity v, () was calculated from the TDKS orbitals:

Vo ko) =1 Z [ll),-lc_ ko OV, 6 O~ kla(t)IVlllJi_G,k_a(t)*} (6)

whereilabelsthe stateindex and G, kand o are the planewave-basis, k
point and spinindex, respectively. We derive the total electron veloc-
ity as:

1
7 2 Yokl %)

cell Gk,o

v(t) =

whereV, is the volume of the unit cell. More details about the algorithm
can be find in refs. **”. The velocity of the free electron was trivially
obtained from the vector potential A(¢) as: v(£).. = hA(t)/m, where m
isthe free electronmass. Inthe calculations, we considered laser pulses
with the characteristics of those used in the experiments. We used
norm-conserving pseudopotentials with the Perdew-Burke-Ernzerhof
functional®. Toreduce the computation time, we opted for the numer-
ical atomic orbitals as well as an auxiliary real-space grid equivalent to
aplanewave cut-off of 150 Rydberg. The k-points sampling was 6 x 6 x9.
The evolution of the system was calculated by self-consistently prop-
agating the electron density and the results are convergent with
timesteps from 2 to 20 as.

To obtain the valence electron density and electrical potential, the
SIESTA DFT package®® was used with the PBE® functional and numeri-
cal atomic orbitals basis set. For sampling, 12 x 12 x 18 points in 3D
k-space were used, and a density matrix was calculated to obtain the
electron density. The reduced effective mass in MgF, was estimated
onthe basis of two valence and two conduction bands within the same
DFT code.

High-harmonic generation in the semi-classical limit

The emission of harmonics from asolid drivenby anintense laser field
F. () =F,sin(w, t)e,is associated with rate of change of the induced cur-
rent in its bulk. Under conditions for which the crystal potential is
softened by the intense field and the corresponding band structure,
in turn, becomes a quasi-parabolic profile as presented in the main
text, the kinematics of the electrons can be treated semi-classically by
introducing the limit>VV,(r(¢)) = VV.((r(t))). In this limit, the current
variationintimeis governed by the classical equation of motion accord-
ing to the Ehrenfest theorem.

2 )~ NIV (0) =~ N Vler(0) ®)

V(<r(t)))inthis case represents the potential of N. valence electronsin
thecrystal,and (r(¢)) stands for the classical expectation value of the
position of the wavepacket within a unit cell of a crystal following the

electricfield of thelaseras (r(t)):(ro + % sin(th)>. roistheexpecta-

tion value of the initial position of the electron wavefunction within a

unit cell. The periodic potential can now be expressed in terms of its
Fourier coefficients V,(r) = ¥, Ve &

Fo

%J(t) =N,V z Vke(—ik~(r(t)>) =iN, z kle [_ik.[r0+“’_55in(WLt)]] 9)
k k

The exponential term in the above equation can be further expanded
using the Jacobi-Anger expansion. The real part of%j(t)can bedecom-
posed into odd and even terms such as:

Q _ 2 odd 2 even
at](t) =3 (t)+atJ ()

where

Qjodd ©) =N, Y kRe() ¥ J, _l[k':‘o]sin[(Zn— Daw, ] (10)
ot Kk n=1 " W

> k-F
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where/yis the Bessel function of the first kind and order N, and Re(V,)
and Im(V,) are the real and the imaginary parts of V. The intensity /,
of aradiated harmonic of order Nas a function of the field strength F,
and driving frequency w, is given by a square modulus of the Fourier
transform of the rate of change of the total current. In the experiments
presented here, only centrosymmetric crystals were used (Im(V;) =0),
hence only odd harmonics are relevant. The intensity /, of the odd
harmonics can be further decomposed into components parallel (e,)
and perpendicular (e, ) to the laser polarization vector:

2
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Notably, the results of equations (12) and (13) closely match those of
previous studies that treated the problem classically** or quantum
mechanically®.

All the factors except V, inside the summation in equation (12)
dependonkthroughk-e,. This factis used tosplit the summationinto
two parts, onein the direction of laser polarization (e,) and other per-
pendicular toit(e,). The summation of the Fourier coefficients of the
potential V in the perpendicular direction (e, ) is given as:

V=2 Vi, 14)

k.

wherek = k;+ Kk, suchthat k,=k-e;and k, =k - e, are the projection of
reciprocal space vector in the direction parallel and perpendicular
to laser polarization, respectively. According to the Fourier slice
theorem®*, the Fourier transformof |7k| representsalDslice of the potential
in the e, direction, passing through the origin r, Hence, the emitted
radiation/(F,, w,, e, isassociated withthe motion of the electronalong
this slice. In this case, equation (12) is reduced to a scalar form:
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Animportantimplication of the scattering approximation as suggested
by the derivations summarized in equation (15) or equation (3) isthat,
asthe valenceelectron cloud, inthe entire volume of the unit cell, can
be considered free to move under the driving field, its dynamics can
be described by the temporal evolution of the expectation value of the



wavefunctionr(¢) (single-point dynamics). The weak perturbation from
the crystal potential to the electron-cloud motion induces coherent
currents and consequentially harmonic radiation. Harmonic yields
calculated by TDDFT and the scattering model areinagood agreement
(Extended DataFig. 2).

Experimental

MgF,, MgO, CaF,, Si0O,, ZnO and diamond crystals with thickness of
about2pmorless were placed inavacuum chamber and were exposed
to few-cycle (about5.5fs) pulses carried atabout 2 eV. The pulses were
produced by a second-generation light-field synthesizer®. The field
strength F, of the laser pulses on the sample was varied by a precisely
adjustable aperture. The detailed field waveform (including the ampli-
tude Fyand the carrier frequency w,) of the pulses was measured using
attosecond streaking*. The vacuum ultraviolet (VUV) radiation emerg-
ing from the sample was polarization-filtered by reflection off two
rhodium-coated concave mirrors placed at a quasi-grazing incidence
(about 78°) as well as a flat-field VUV grating (about 75°). The intensity
of the perpendicular polarized (e,) component of the emitted high
harmonics was suppressed by a factor of about 20 compared with the
parallel polarized component (e,). The grating was also used to disperse
the harmonic spectrum on a microchannel plate-phosphor screen
detector. A high-dynamic-range charge-coupled device camera
recorded images of high-harmonic spectra versus the driving field
strength and the crystal angle. Cut-offs in all measurements were
defined asthe lastharmonicenergy detectable by our detection system.
Owing to a strong contamination of the fifth harmonic signal by
second-order diffractions of the grating, its intensity dependence has
been omitted in the potential reconstruction of MgF,.

Reconstructing 1D slices of the crystal potential

The intensity yields /, of the recorded harmonics versus driving field
amplitude F, were used to retrieve the amplitudes and phases of the
Fourier coefficients of the 1D slice of the crystal potential as described
by equation (15) or equation (3). Asin this first study we are interested
in the relative amplitudes and phases among these coefficients, the
intensity yields of all harmonics were normalized to unity. This step
is essential in the reconstruction process as it prevents artefacts that
relate to the accurate knowledge of the relative yields of harmonics.
The latter can be affected by the transmission of the specimen and
the intensity calibration of the detection system—especially over the
extended spectral ranges of study.

Aleast-squaresfitting algorithm (Levenberg-Marquardt) was used to
fit the experimental data within MATLAB R2016b. The fitting converged
rapidly andyielded aregressionbetter than 3%. The linear slices of the
potential resulting fromthe inverse Fourier transform of the projected
coefficients are plotted in arbitrary amplitude units.

Strictly, equation (15) or equation (3) are accurate for amonochro-
matic light field. In the case of a pulsed driving field, the equation of
motion for the total current can expressed as

0 [—ik-[F"(t)D
—J()=<iN, Y klel ot (16)
ot m
where F,(¢) denotes the field waveform of the driving pulse. Harmonic
spectra calculated directly by equation (16) are shownin Extended Data
Fig.2b. Acomplete reconstruction of the Fourier coefficients canalso
be achieved using the above formula with F,(¢) being the experimen-
tally measured electric field waveform. Yet for electric field strengths
up to about 1.2 V A™, the analytical form remains accurate under an
adjustment of the field amplitude F,, used in the reconstruction of
the intensities for each harmonic N as

JN

Foy= FOTerf[%] (17)

where F,is the peak field strength of the driving pulse. In this case, the
use of the quasi-analytic formulas in the main text allows a broader
applicability of the technique proposed and implemented here and
can also be applied in experimental facilities where a field-resolved
characterization of light waveforms is not currently available.

Scattering picture and crystallography

For crystals with the rutile-structure MgF, in our study, the expecta-
tion value of the initial wavefunction coincides with the symmetry
points of the crystal, which are the Mg ions (marked as C;and C,) on
planes (001) and (002) (Fig. 3a, b, insets). As a result, when the polari-
zation vector of the laser is, for example aligned with the [100] axis of
MgF, the 1D slice of the potential probed will be on aline defined by
the symmetry point (C,) and laser polarization vector plus a1D slice
of the potential on a line defined by the symmetry point (C,) and the
laser polarization vector. Correspondingly, when the 2D potential on
aplaneis reconstructed, we anticipate that it will represent the addi-
tion of the two parallel planes on which the symmetry points lie, that
is, (001) and (002), shifted so that the symmetry centres coincide. This
perspective is supported by the experimental results for the potential
in Fig. 4c, which indeed represent the addition of the potentials on
the two planes. For the CaF, experiments, the symmetry point of the
crystal (marked as C) lies exclusively on the (002) plane as shown in
Extended DataFig.5a. Asaresult, laser picoscopy probes only asingle
plane (Extended Data Fig. Se).

Reconstructing the potential on a plane

Thereconstruction of the potential on a plane requiresinformation on
the properties of the lattice. The MgF, crystal has asquare lattice when
seen from the c axis, the axis through which the laser impinges on the
crystal in our experiments (Fig. 3a, b, insets). Although this informa-
tion can be acquired from X-ray crystallography, laser picoscopy is
independent from thisinformation. Indeed, the lattice symmetries can
be directly inferred by the angular dependence of the high-harmonic
intensity yield as a function of the rotation of the crystal with respect
tothe caxis (Extended DataFig.4). This feature of high harmonics has
been repeatedly demonstrated in previous studies”®. The 90° sym-
metry of these data directly suggests a square lattice.

A 2D potential slice U(x, y) of a unit cell with a lattice constant d can
be expanded in Fourier series as: U(x, ) = ¥ ey, Ue' 4 Xel 4™, where
u,, is the 2D Fourier coefficient of index [, and m and Z denote integer
numbers. Toreconstructa2D picture of the potential, we need toiden-
tify u,,. In our experiments, the Fourier coefficients of the 1D slice of
the potential ( 17,(I)along the characteristic crystal directions [100], [110]
and [120] were first reconstructed. As described earlier, these Fourier
coefficients are the projections of u,,, along the respective crystal direc-
tions. This factis used to create a system of linear equations, which are
inturnsolved to obtain the amplitudes and phases of u,,. Importantly,
the symmetries of crystals give rise to numerous linear constraints,
which reduce the number of unique unknowns of u,,, and simplify the
problem dramatically. Inthis study, the system of equations was solved
by a standard linear least square fitting method. The accuracy of the
reconstruction depends on the number of unique 1D slices used to
derive the 2D potential. To plot the 2D slice of the potential (Fig. 4c,
Extended DataFig. 5d), we kept all Fourier coefficients up to the seventh
orderimplyingaresolution of about 90 pm. Yet amore advanced imple-
mentation of this approach using several 1D potential slices acquired
at different angles can restore the full resolution, which is currently
availableinthe 1D measurements of the potentials as shown in the main
text (about 26 pm).

Althoughinthe currentimplementation of the technique the poten-
tialsin eachslice are retrieved independently, two essential features
of our approach allow their accurate combination to create 2D slices—
and eventually 3D images—of the structure. The first is related to the
fact that all reconstructed linear slices are centred around the same
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symmetry point of the crystal, or alternatively, the symmetry centre
(expectation value of the position) of the crystal wavefunction within
aunit cell. Thisimplies that arbitrary phase shifts of the 1D potentials,
before combining the datain a 2D picture, are not required. Second,
although the 1D potential slices are reconstructed separately by the
fitting of the normalized intensity harmonicyields, their relative ampli-
tude canstill be calibrated based on the variation of the harmonic yield
ineachdirection. Inthe currentimplementation, the intensity yield of
the lowest harmonic (third) was used to this end.

Reconstruction of valence potential and electron density of CaF,

CaF, is best represented’® by an expanded fcc lattice, composed of
alternatinglayers of Caand F atoms, as seen from the c axis (Extended
DataFig.5a). Asymmetry point (Cin Extended Data Fig. 5a) of the crystal
lies at the centre of the (002) (Ca plane). Therefore, we anticipate that
inthis crystal, laser picoscopy will be probing a single crystal plane—the
Caplane.

Inthe experiments, the pulses impinge on crystalline CaF,along the
caxis (Extended DataFig. 5a, orange curve). One-dimensional potential
slices reconstructed by recording the intensity yield of harmonics ver-
sus the field strength (Extended Data Fig. 4) along the [110] and [100]
axesareshownin Extended DataFig. 5b, c, respectively. The derived 2D
potential and electron density slices (for the plane (002)) are shownin
Extended DataFig.5d, e, respectively as well asin Extended Data Fig. 6.

Beyond the anticipated dominance of Caonplane (002), anotable
contribution from F~ ions (Extended Data Fig. 5b, d, e) centred on the
(004) planeis also observed. This can be attributed to the extended
size of theionicradius of fluorine compared with the distance between
the (004) and (002) planes in CaF,, as verified by DFT simulations
(Extended Data Fig. 5f), and is suggestive of the high dynamic range
provided by laser picoscopy. The radius, /™™ for Ca*" as evaluated by
the experimentally derived electron density is r'2% = 50 pm, in agree-

a
ment with the theoretical prediction* of about 54 pm.
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Extended DataFig.1|Strongfield-driven electrondynamicsin MgF, as calculated by TDDFT for laser field strengths F, of 0.1VA™ (a), 0.9 VA™ (b)
(hw, =2eV).a-c, Comparison of crystal (v.; blue curves) and free (vg..; red and2.0VA™, and carrier atan energy of iw, =2eV.
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Extended DataFig.2|High-harmonic generationin MgF, (theory).
High-harmonicspectracalculated by TDDFT simulations (red curve) and by
use of the scattering model (blue curve) for laser parameters (7w, =2eV and
Fo=0.9VA™) and crystal orientation settings as quoted in Fig. 1d.
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Extended DataFig. 3| Crystal orientation dependence of high-harmonic crystalwithrespectto the laser polarization and the radius represents the
generationin MgF,. Theintensity of the third, ninth and thirteenthharmonics ~ harmonicyield. The four-fold symmetry of the crystal suggests asquare lattice.
measured asafunctionofthe crystal angle at field strengths (F,=0.58, 0.65 Errorbarsinthe measured dataindicate the standard deviation of the mean
and 0.7V A™) of thedriving pulse. The rotation of the crystal is performed with value from four measurements acquired under identical conditions.

respect to the caxis. The azimuthal angle represents the orientation of the
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Extended DataFig. 4 |Laser picoscopy in CaF,. a, Intensity yields of
representative harmonics (V=9,11and 13) in CaF, measured as a function of the
crystalrotation angle with respect to the caxis and for three representative
driving field strengths (F,=0.58,0.65and 0.7VA7).b,c, Intensity yields (black
dots) of harmonics versus field strengths measured along the [110] (b) and
[100] (c) axes of the crystal. The red and blue curves are the fitting of the

intensity yields according to equation (18) or equation (3). Error barsina-c
indicate the standard deviation of the mean value from three measurements
acquired underidentical conditions.d, e, Retrieved amplitudes ‘7k. andtheir
relative phases (O rad inblueand mradinred) along the [110] (d) and [100] (e)
axes of the crystal.
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Extended DataFig. 5| Reconstruction of the valence electron potential and
density of CaF,. a, Crystal structure of CaF,. The laser pulse (orange curve)
impinges onthe crystal along the caxis. The potentialis probed alonglines
determined by laser polarization vectors (orange arrows) and the symmetry
point C.b, c,Reconstructed 1D slices of the valence potential (blue curves)
when the laser polarization vector is aligned with the [110] (b) and [100] (c)
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axes. Grey and cyan spheresrepresent F-and Ca*, respectively, as aligned
along the measurementline.d, Reconstructed 2D slice of the valence electron
potential of CaF,on the (002) plane. Bright spotsrepresent Ca*?ionsand the
lightbroad spotsrepresent F~ions. e, Valence electron density evaluated from
thedataind.f, DFT-calculated valence electron density of CaF,on the (002)
plane.
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Extended DataFig. 6 | Electron density of CaF, extended over multiple unit
cells. Bright dots correspond to Ca* ions centred on (002) plane while the light
dotscorrespondto F~ionscentred on (004) plane but penetratinginto the
(002) plane.
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