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ABSTRACT 

The increasing demand for denser information storage and faster data processing has fueled a keen interest 
in exploring spin currents up to terahertz (THz) frequencies. Emergent 2D intrinsic magnetic materials 
constitute a novel and highly controllable platform to access such femtosecond spin dynamics at atomic 
layer thickness. However, the function of 2D van der Waals magnets are limited by their Curie temperatures, 
which are usually low. Here, in a 2D superlattice (Fe3 GeTe2 /CrSb)3 , we demonstrate ultrafast laser-induced 
spin current generation and THz radiation at room temperature, overcoming the challenge of the Curie 
temperature of Fe3 GeTe2 being only 206 K. In tandem with time-resolved magneto-optical Kerr effect 
measurements and first-principles calculations, we further elucidate the origin of the spin currents—a 
laser-enhanced proximity effect manifested as a laser-induced reduction of interlayer distance and enhanced 
electron exchange interactions, which causes transient spin polarization in the heterostructure. Our findings 
present an innovative, magnetic-element-free route for generating ultrafast spin currents within the 2D limit, 
underscoring the significant potential of laser THz emission spectroscopy in investigating laser-induced 
extraordinary spin dynamics. 

Keywords: ultrafast terahertz spin current, 2D superlattice (Fe3 GeTe2 /CrSb)3 , laser-enhanced proximity 
effect, above Curie temperature 
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spectroscopy is another well-established scheme 
that provides insights into transient spin dynam- 
ics with subpicosecond time resolution [18 –20 ]. It 
is widely utilized in 3D magnets as an ultrafast, 
sensitive and contactless amperemeter for spin cur- 
rents [18 –25 ]. By contrast, the recent emergence 
of 2D intrinsic magnetic materials with remark- 
able properties [26 –35 ]—such as highly tunable 
characteristics and sensitive interlayer coupling—
creates exciting new possibilities for exploring non- 
equilibrium sp in dynamics and coherent THz pulses 
down to the atomically thin limit [21 ]. This devel- 
opment has the potential to bring about key ad- 
vancements in low-dimensional THz spintronic de- 
vices for future storage and quantum information 
applications. 

©The Author(s) 2024. Published
Commons Attribution License (h
work is properly cited. 
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NTRODUCTION 

ltrafast spin currents have developed into promis-
ng information carriers, revolutionizing the land-
cape of high-speed and energy-efficient spintronic
evices [1 –6 ]. This burgeoning research field traces
ts origins back to the seminal observation of subpi-
osecond demagnetization in a nickel film triggered
y laser pulses [1 ] and has since been propelled by
 series of fundamentally intriguing ultrafast mag-
etic processes [7 –14 ]. To delve into these mag-
etization dynamics, several effective probe tech-
iques have been employed, including the time-
esolved magneto-optical Kerr effect (TRMOKE)
15 ,16 ], X-ray magnetic circular dichroism [14 ]
nd photoemission spectroscopy [12 ,17 ]. In addi-

ion to these methods, terahertz (THz) emission 
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However, realizing ultrafast spin currents in 2D
agnetic materials at room temperature is extremely
hallenging and thus rarely reported. The long-range
erromagnetic order of van der Waals crystals is vul-
erable to thermal fluctuations and is only estab-
ished at low temperatures [27 –30 ]. Despite recent
tudies revealing room-temperature spintronic THz
mission in a 2D ferromagnetic/topological insula-
or heterostructure [21 ] due to interface-enhanced
urie temperature ( TC ) up to 400 K [36 ], the gener-
tion of THz spin currents above a finite TC is a more
ritical issue that remains elusive. 
Here, we first demonstrate the generation of

bove- TC ultrafast THz spin currents based on 2D
agnetic materials. Specifically, we investigate a 2D

ayered metallic ferromagnetic/antiferromagnetic
uperlattice (Fe3 GeTe2 /CrSb)3 (abbreviated as
FGT/CS)3 ) with an intrinsic TC of 206 K [35 ].
pon photoexcitation by ultrafast optical pulses, we
uccessfully observed room-temperature ultrafast
pin current generation and coherent THz emission
n the (FGT/CS)3 superlattice. Combined with the
rst-principles calculation based on the real-time
ensity functional theory framework (rt-TDDFT)
nd Ehrenfest Molecular Dynamics, we attribute the
nderlying physics mechanism of the spin current
eneration to a laser-enhanced magnetic proximity
ffect at the interface. Our understanding is cor-
oborated by the TRMOKE measurement of the
orresponding transient spin polarization. 

ESULTS 

bove- TC spintronic THz emission from 

he (FGT/CS)3 superlattice 

he (FGT/CS)3 superlattice is constructed by
epeating the FGT/CS heterostructure for three
eriods on mica substrate using molecular beam
pitaxy (MBE). Each FGT/CS heterostructure
onsists of four layers of Fe3 GeTe2 (FGT, 3.2 nm)
nd a single layer of CrSb (CS, 1.6 nm) (for more
etails see Section S1). A schematic overview
f the THz emission measurement is delineated
n Fig. 1 a. Vertically polarized (along the y -axis)
00-nm femtosecond laser pulses with a pump
uence of 3.75 × 10−5 mJ/cm2 are used to excite
he (FGT/CS)3 superlattice at room temperature.
eanwhile, a photoconductive antenna is config-
red to detect THz signals copropagating with the
aser beam. Figure 1 b i l lustrates a typical THz tem-
oral waveform of the (FGT/CS)3 superlattice, with
 duration of ∼1.7 ps. Under similar experimen-
al settings, however, the detected THz radiation
rom the CS-only film (4 nm) is nearly an order of
agnitude weaker, and the THz radiation from the
Page 2 of 9
FGT film (10 nm) is barely detectable. The corre- 
sponding Fourier transformation results are shown 
in Fig. 1 c. Additionally, the THz electric-field peak 
intensity is observed to be linearly proportional to 
the pump fluence, as depicted in the inset of Fig. 1 c.
These findings indicate that the predominant THz 
emission from the (FGT/CS)3 superlattice does not 
originate solely from CS-only or FGT-only films. 

To investigate the radiation mechanism, we 
examined the dependence of THz emission from 

the (FGT/CS)3 superlattice on the sample azimuth 
angle θ and the linear laser polarization angle α
[21 ,37 ]. In Fig. 2 a, the relationship between the
peak value of the THz waveforms and θ is plotted, 
with the laser polarization fixed along the y -axis 
( α = 0◦). The THz electric-field peak reaches its 
maximum value at θ = 6 0◦ and its minimum value 
at θ = 24 0◦, fitting well by a sinusoidal function 
with a period of 360°. Subsequently, with θ fixed 
at 60°, the dependence of the THz amplitude on 
the linear laser polarization angle α is summarized 
in Fig. 2 b. As α is varied from 0° to 180°, the THz
electric-field peak as a function of α demonstrates a 
cosine osci l lation with a small amplitude, alongside 
a significant non-zero offset. This outcome shows 
that only a minor fraction of the THz radiations 
are associated with laser polarization, while most 
remain independent (for the influence of laser po- 
larization state on THz emission see Section S3). 
The corresponding fitted curve, based on a cosine 
function with a period of 180°, aligns well with the 
experimental data. Notably, the fitting results in 
Fig. 2 a and b allow us to infer the variation of the
laser-polarization-independent THz radiation com- 
ponent as θ increases from 0° to 360° (Fig. 2 c). This 
component exhibits 2-fold rotational symmetry and 
is only slightly less than the total THz radiation. 
Simultaneously, the small-amplitude polarization- 
dependent contribution, as i l lustrated in Fig. S2e, 
corresponds to the total radiation of CS-only films. 

Based on the above characterizations, it is fea- 
sible to deduce that the dominant component of 
the generated THz radiation is azimuth-dependent 
but laser-polarization-independent, thereby ruling 
out the contribution of the inverse Faraday effect 
in metallic materials [38 ] and non-linear optical 
processes in the crystal [39 ]. To further elucidate 
the main THz emission mechanism, we examine 
the THz radiation under different experimental 
geometries. As depicted in Fig. 2 d and e, the THz
polarity reverses when the sample is rotated by 180°
along the x -axis, with a variation in amplitude due 
to the dissimilar propagation of 800-nm laser pulses 
and THz waves through the substrate. In contrast, 
upon left-right flipping along the y -axis, the polarity 
of the THz waveform remains unchanged. The 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae447#supplementary-data
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Figure 1. THz emission from the (FGT/CS)3 superlattice at room temperature with- 
out external magnetic fields. (a) Schematic illustration of the THz emission from the 
(FGT/CS)3 superlattice. (b) THz emission temporal waveforms of the (FGT/CS)3 super- 
lattice (blue curve), FGT (gray curve) and CS (red curve). (c) Corresponding Fourier- 
transformed spectra of (b). Inset: pump fluence dependence of radiated THz electric- 
field strength from the superlattice. a.u.: arbitrary units. 
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Figure 2. Verification of the spin-to-charge conversion effect as the predominant THz 
radiation mechanism from the (FGT/CS)3 superlattice. (a) The relationship between the 
THz electric-field peak and sample azimuth θ is a sinusoidal variation characterized 
by a period of 360°. (b) The peak-to-peak value of waveforms as a function of laser 
polarization α for the superlattice. Only a small fraction of THz radiation is related to 
α. (c) The relationship between the laser-polarization-independent component of the 
superlattice and θ . (d) Temporal THz waveforms from the superlattice were measured 
by rotating 180° along the x - and y -axis, which indicate (e) the directions of both spin 
currents 

−→ js and charge currents 
−→ jc . 
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contribution from magnetic dipole osci l lations is 
therefore negligible [40 –42 ], and these outcomes 
are entirely consistent with the signatures of the THz 
radiation induced by the spin-to-charge conversion 
effect [37 ], which can be described by: 

−−→ ETHz ∝ −→ jc ∝ γ · −→ js ×
−→ M 

| Ms | , (1) 

where −→ js represents the ultrafast spin currents 
driven by femtosecond laser pulses. Utilizing the 
spin-to-charge conversion effect, the spin currents −→ js can be quantitatively analyzed by recording the 
electric-field waveform of emitted THz radiation fol- 
lowing the decaying charge current −→ jc . γ is the spin 
Hall angle. � M denotes the in-plane magnetization, 
which may be attributed to the interfacial exchange 
bias [37 ] rather than external magnetic fields, and 
Ms is the saturation magnetization. Therefore, the 
polarization direction of linearly polarized THz 
waves can be controlled by rotating the sample along 
its azimuthal axis. Moreover, when the (FGT/CS)3 
superlattice is flipped, the direction of the spin 
current reverses. However, the in-plane magnetiza- 
tion direction remains unchanged or reversed after 
flipping, which consequently results in the opposite 
polarity of the emitted THz electric fields. 

Although the above analysis of the THz radiation 
is bolstered by several consistencies confirming 
that the predominant THz radiation is attributed 
to spin-to-charge conversion, prior research on 
the (FGT/CS)3 superlattice [35 ] introduces two 
paradoxes challenging our view of spintronic THz 
emission: 

(i) Where do the spin currents originate from? The 
TC of our superlattice sample is 206 K [35 ], 
which is significantly below room temperature. 
Anomalous Hall effect measurements in Fig. 3 a 
reveal distinguishable hysteresis up to 200 K, 
which vanishes at 300 K. The laser-induced 
dissipation of spin angular momentum asso- 
ciated with ultrafast demagnetization [1 ] is 
unlikely to occur at room temperature. We 
cryogenically cooled the sample and measured 
the temperature dependence of THz radia- 
tion. As depicted in Fig. 3 b, the THz intensity 
remains constant at lower temperatures but 
decreases at 200 K. When the temperature 
rises above 200 K, the signal intensity stabilizes 
again. The THz waveforms and corresponding 
fast-Fourier-transformed spectra are displayed 
in Fig. S5b and c, where we propose that there 
are different mechanisms for spin current 
generation at temperatures below 200 K 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae447#supplementary-data
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Figure 3. Temperature- and magnetic-field-dependent spintronic THz emission. (a) The anomalous Hall effect results of 
(FGT/CS)3 superlattice under perpendicular geometry at 100 K, 200 K and 300 K. (b) Radiated THz amplitudes as a function 
of the temperature. (c) At 100 K, THz waveforms emitted from the superlattice were measured under zero magnetic field and 
with an out-of-plane magnetic field of 400 Oe. (d) At 300 K, applying an out-of-plane magnetic field of + 2000 Oe reverses 
the THz signal. When subsequently flipping the magnetic field, the THz radiation polarity remains constant, but the intensity 
surpasses that observed without magnets. 
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and above 200 K (for more information see
Sections S5–6). Below 200 K, the superlattice
exhibits a ferromagnetic phase. The sudden
heating of the sample by the femtosecond
pumping pulse leads to ultrafast demagnetiza-
tion, generating spin currents. Above 200 K,
ultrafast spin currents can be generated via an
unidentified mechanism related to photoexcita-
tion, which wi l l be investigated in subsequent
sections using TRMOKE techniques and
theoretical analysis. 

ii) The other paradox concerns the spin orien-
tation. Below TC , the superlattice exhibits
anisotropic magnetic properties, with its easy
axis along the out-of-plane direction and its
hard axis situated within the in-plane direction.
This i l lustrates the fact that the spin orientation
should predominantly align along the out-of-
plane direction, which theoretically forbids the
THz waves propagating along the z -axis [18 ].
He et al. have reported that the spin orientation
of Cr:(Bi, Sb)2 Te3 /CrSb heterostructures is
not completely perpendicular to the sample
plane without external out-of-plane magnets
[43 ]. This indicates that our superlattice may
also exhibit tilted spin orientation, which
contains in-plane spin components. To verify
Page 4 of 9
this hypothesis, we initially applied a 400 Oe 
magnetic field parallel to the out-of-plane mag- 
netization (along the surface normal) at 100 K. 
The intensity of THz radiation is reduced by 
42%, as shown in Fig. 3 c. Intriguingly, when a 
perpendicular 20 0 0 Oe external magnetic field 
is applied at 300 K, the polarity of the THz 
waveform is reversed. With the subsequent 
switch of the magnetic field, the THz radiation 
polarity recovers, but the intensity is enhanced 
compared to its initial intensity (Fig. 3 d). The 
two observations mentioned above, namely the 
dependence of THz amplitude on the applied 
magnetic fields at 100 K and 300 K, respectively, 
confirm the tilting of spin orientation. Note that 
the out-of-plane magnetic field strength used 
for our experiments conducted at both room 

and low temperatures was consistently applied 
at 20 0 0 Oe. However, at 100 K, due to the
hindrance posed by the cryostat cavity, the 
magnetic field strength applied to the superlat- 
tice was reduced to 400 Oe. Furthermore, as 
depicted in Fig. S9, the THz amplitude exhibits 
minimal change under in-plane magnetic fields 
(20 0 0 Oe), corresponding to the hard axis 
of the superlattice, which limits the in-plane 
modification of spins. 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae447#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae447#supplementary-data
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RMOKE: the dynamical signal of 
ight-induced transient spin polarization 

o explore the origin of room-temperature spin cur-
ents in the (FGT/CS)3 superlattice, we performed
RMOKE measurements, a widely used tool that
irectly reflects magnetization changes during pho-
oexcitation [9 ,10 ]. Particularly in the non-magnetic
aterials and initial paramagnetic state of magnets,
RMOKE techniques can reveal unconventional
ehavior such as transient spin polarization [4 ,13 ] or
aser-induced magnetism [16 ,44 ]. A simplified block
iagram of the set-up is depicted in Fig. S10, in which
he (FGT/CS)3 superlattice was exposed to an 800-
m laser beam with a duration of 100 fs, and the out-
f-plane component of magnetization was probed
sing a 400-nm laser beam ( Section S9). Figure 4
hows TRMOKE signals (for the extraction process
ee Methods), which start to appear upon the arrival
f the pump pulse (at the delay time t = 0 ps) and
each their peak at t = 1.0 ps. After t = 1.0 ps, the
RMOKE signals gradually relax, resembling the re-
Page 5 of 9
laxation process observed in laser-induced demagne- 
tization. By increasing the magnetic field, we observe 
a corresponding increase in the maximum value of 
the TRMOKE signal. Furthermore, reversing the 
polarity of the magnetic field resulted in a reversal of
the TRMOKE signal. By fitting the trace with a two-
exponential function convoluted with the Gaussian 
laser pulse, we further determine two characteristic 
timescales: 270 fs and 1.73 ps ( Section S12). 

Compared with the (FGT/CS)3 superlattice, 
no TRMOKE signal was detected in the pure 
FGT film under the same experimental conditions 
( Fig. S11), ruling out a paramagnetic response in 
the (FGT/CS)3 superlattice. Thus, we preliminarily 
attribute the magnetic-field-dependent signals in 
the superlattice to an indication that the laser causes 
transient spin polarization [4 ] in FGT, which stems 
from strengthened interfacial exchange coupling at 
the FGT/CS interface. The characteristic time of 
270 fs corresponds to the spin polarization excita- 
tion induced by the pumping laser pulses, followed 
by a relaxation process of 1.73 ps. This finding aligns
with the duration of the THz emission waveform. 

Theoretical analysis of the 

laser-enhanced proximity effect 
To clarify the underlying mechanisms driving the 
ultrafast spin dynamics observed above the TC , 
we conducted corresponding theoretical simula- 
tions. Figure 5a i l lustrates the construction of the
FGT/CS heterostructure with a single magnetic 
domain, mimicking the experimental superlattice 
structure. In this study, a pump light with a wave-
length of 800 nm and a fluence of 0.12 mJ/cm2
was selected to replicate the optical excitation pro- 
cess observed in experiments. Figure 5b and c de- 
picts the increase in the overall magnetic moment 
after photoexcitation, consistent with the results of 
TRMOKE and THz emission. Under i l lumination, 
the total magnetic moment tilts from the z -axis to
the x-y plane, as evidenced by during-pulse demag- 
netization ( Fig. S11). Following the disappearance of 
laser pulses, the magnetic moment reorients towards 
the z -axis, resulting in a sudden surge in magnetiza-
tion, as i l lustrated in Fig. 5 b and c. To better compre-
hend the dynamical involvement of individual mag- 
netic atoms, we analyzed specific moments (50 fs, 
450 fs and 850 fs) indicated by arrows in Fig. 5 b and
c. Figure 5 d i l lustrates the orientation of the local
magnetic moment at these moments. At the moment 
of 50 fs, in the absence of light, the magnetic moment
of the FeIII atom in FGT material exhibits an antipar- 
allel orientation with the FeI and FeII atoms, indicat- 
ing the antiferromagnetic coupling between the FeIII 
and FeI (or FeII ) atoms. Antiferromagnetic coupling 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae447#supplementary-data
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primitive unit cell of the (FGT/CS)3 superlattice. The three arrows correspond to the three moments of (i) 50 fs, (ii) 450 fs and (iii) 850 fs, respectively. 
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s also observed between Cr atoms in CS and at the
GT/CS interfaces. The antiferromagnetic coupling
irection changes from the z -axis to the x-y plane at
50 fs. Notably, the exchange coupling between FeIII 
nd FeI (or FeII ) changed from antiferromagnetic to
erromagnetic coupling, leading to changes in mag-
etic configuration between 50 fs and 850 fs. 
Moreover, a significant (up to 1 Å) relative in-

erlayer displacement between the FGT and CS
ayers (Fig. 5 e) was observed, defined as the z -
irection displacement between Te atoms and Cr
toms in Fig. 5 a. We investigated three cases to con-
rm its impact on laser-driven enhanced magnetiza-
ion: no fixed atoms, atoms with only the z -direction
otions, and fixed atoms. Figure S14 results indi-
ate that the total magnetic moment increases only
hen atomic motion [45 ,46 ] in the z -direction is
llowed. 
Figure S15demonstrates that ultrafast lasers open

n effective channel to change the potential energy
urface in a non-thermal way, enabling the system
o switch to the metastable magnetic state with en-
anced magnetization. These results stem from a
uge interlayer displacement and enhanced mag-
etic exchange interactions between the FeIII atom
nd FeI (or FeII ) atoms induced by the femtosecond

aser in the FGT/CS heterostructure. 
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DISCUSSION 

At first glance, our observation of spintronic THz 
emission in the (FGT/CS)3 superlattice at room 

temperature may be counterintuitive, given the dis- 
appearance of ferromagnetic order in the superlat- 
tice above 206 K. However, the femtosecond optical 
pulses substantially excite the spin polarization in a 
non-equilibrium state, thus allowing the generation 
of ultrafast spin currents. The collective experimen- 
tal and theoretical observations encapsulate the en- 
tire process as follows. 

The absor ption of the 8 00-nm pump laser by 
the (FGT/CS)3 superlattice results in the shorten- 
ing of the interlayer distance between the FGT and 
CS layer in just a few hundred femtoseconds. This, 
in turn, amplifies the proximity effect or the interac- 
tion between the two materials sufficiently to cause 
the spin polarization of FGT above TC . Meanwhile, 
the magnetic moment of CS reorients from out-of- 
plane to in-plane, polarizing the spin of FGT in the 
in-plane direction. Here, the spin polarization along 
the specific in-plane direction is a consequence of 
the unique electronic structure and spin-orbit cou- 
pling interactions present. The underlying crystal lat- 
tice and the associated spin textures allow for a pref- 
erential alignment of spins due to the influence of 
spin-orbit coupling interactions. These interactions 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae447#supplementary-data
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an lead to a non-uniform spin distribution, which
avors alignment in a particular direction. Further-
ore, the asymmetry at the interface may also result

n the breaking of spin degeneracy, thus enhancing
he probability of spin polarization along a specific
rientation rather than resulting in a completely non-
olarized state. Because the pump photon energy of
.55 eV surpasses the optical gaps of the FGT and CS
ayers, photocarriers are simultaneously excited and
olarized along the in-plane direction. The resulting
pin-polarized current is subsequently injected into
he CS layer and converted into the charge current
hrough the spin-to-charge conversion effect, emit-
ing THz radiation. During this process, the tran-
ient spin polarization response is captured by the
RMOKE technique. 
As we discussed, the electron–electron exchange

nteractions at the interface dominates the laser-
nduced spin dynamics. We speculate that this laser-
nhanced proximity effect may further induce fer-
omagnetic order in FGT. Nevertheless, regardless
f the circumstances, our results indicate that these
rocesses occur more rapidly than the correspond-
ng dynamics of laser-induced demagnetization in
erromagnetic FGT [47 ]. 

ONCLUSION 

n summary, we have experimentally demonstrated
he generation of above- TC ultrafast spin currents
n a 2D van der Waals (FGT/CS)3 superlattice,
etected by emitted electromagnetic transients.
eal-time first-principles simulations of the ex-
ited state dynamics post-photoexcitation identify
hat the key to such intriguing spin dynamics is
 reduction in interlayer displacement and an en-
ancement of light-modulated electron–electron
xchange interactions. The TRMOKE technique
as provided complementary insights, unveiling
ptically excited instantaneous spin polarization
n the (FGT/CS)3 superlattice. We collectively
efer to these two observations as a ‘laser-enhanced
roximity effect’, which holds the potential to induce
ransient ferromagnetism in FGT. We believe the
ransient THz spin dynamics above TC revealed in
his work wi l l advance high-speed optoelectronic
evice applications based on 2D magnetic materials.

ETHODS 

aser THz emission spectroscopy 
n the THz emission spectroscopy system ( Fig. S2a),
 Ti: sapphire laser osci l lator with an 800 nm cen-
ral wavelength, 100 fs pulse duration and 80 MHz
epetition rate was utilized. The average power of the
ump pulses ranges from 10 to 150 mW, with a spot
Page 7 of 9
diameter of 2 mm. Two 90° off-axis parabolic (OAP) 
mirrors collimated and then focused the generated 
THz pulses onto a low-temperature-grown Ga A s an- 
tenna (mounted to a silicon lens) for detection. The 
THz beam path was enclosed in a plastic box purged
with dry nitrogen gas to minimize water vapor ab- 
sorption, maintaining humidity below 1.5%. 

Extraction of the 

magnetic-field-dependent signals 
We applied an external magnetic field perpendicular 
to the sample surface from −10 kOe to + 10 kOe.
The raw time-resolved magnetization dynamics un- 
der various applied fields are depicted in Fig. S12a. 
At 25 ps, the transient magneto-optical Kerr signal 
comprises different components, namely electrons, 
magnons (quantized states of spin waves) and 
phonons (quantized states of lattice waves). The 
amplitude increases with positive external fields, 
while for negative external fields, the signal is re- 
versed and gradually decreases. Notably, the signal 
exhibits asymmetric changes with the magnetic 
field, approaching zero at 3 kOe. The relationship 
between the maximum signal values and magnetic 
fields is depicted in Fig. S12b. The signal exhibits 
inverse behavior, and the curve demonstrates odd 
symmetry. To obtain an effective magnetic signal, we 
add and subtract the positive and negative magnetic 
fields ( Fig. S12c and d). This yields a magnetic 
component ( Fig. S12c) that increases linearly with 
the magnetic field magnitude and a non-magnetic 
component ( Fig. S12d) that remains constant. The 
gray area represents systematic deviation due to the 
objective lens focusing during measurements. This 
method effectively removes non-magnetic influ- 
ences, allowing us to extract the laser-induced spin 
polarization signal during magnetic field changes. 
The reflectivity curve is i l lustrated in Fig. S12e. 

Theoretical calculation 

Recent implementations of rt-TDDFT, available in 
the QUANTUM ESPRESSO package, were uti- 
lized for dynamical modeling [48 –51 ]. Local den- 
sity approximation (LDA) described the electronic 
exchange-correlation contribution to the total en- 
ergy [52 ,53 ]. The valence electron wave func- 
tions were expanded using plane-wave basis sets 
with an energy cutoff of 120 Ry. Full-relativistic, 
norm-conserving pseudopotentials (NCPP) were 
employed to describe core electrons and the nu- 
clei [54 ,55 ]. The Bri l louin zone was sampled by an
11 × 11 × 1 Gamma-centered k -mesh. The structure 
was fully relaxed so that the convergence threshold 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae447#supplementary-data
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n the ionic forces and the total energy satisfied 10−9 

.u and 10−10 Ry, respectively. 
We apply a Gaussian-envelop laser pulse follow-

ng a waveform: 

E ( t) = E0 cos (2 πωt )exp 
[ 
−(t −t0 ) 

2 
/ 2 σ 2 

] 
, 

(2)
here the pulse duration σ is 27.6 fs and the photon
nergy hω is 1.55 eV. The laser field has a fluence of
.12 mJ/cm2 at the initial time t0 = 50 fs. We em-
loyed a reduced 5 × 5 × 1 k -mesh, and the time
tep is 0.145 fs for nuclei and 0.145 for electrons in
ur dynamical simulations. 

UPPLEMENTARY DATA 

upplementary data are available at NSR online. 
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