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Spatially indirect intervalley excitons in bilayer WSe2
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Spatially indirect excitons with displaced wave functions of electrons and holes play a pivotal role in a large
portfolio of fascinating physical phenomena and emerging optoelectronic applications, such as valleytronics,
exciton spin Hall effect, excitonic integrated circuit, and high-temperature superfluidity. Here, we uncover three
types of spatially indirect excitons (including their phonon replicas) and their quantum-confined Stark effects
in hexagonal boron nitride encapsulated bilayer WSe2 by performing electric field-tunable photoluminescence
measurements. Because of different out-of-plane electric dipole moments, the energy order between the three
types of spatially indirect excitons can be switched by a vertical electric field. Remarkably, we demonstrate,
assisted by first-principles calculations, that the observed spatially indirect excitons in bilayer WSe2 are also
momentum indirect, involving electrons and holes from � and K/� valleys in the Brillouin zone, respectively.
This is in contrast to the previously reported spatially indirect excitons with electrons and holes localized in the
same valley. Furthermore, we find that the spatially indirect intervalley excitons in bilayer WSe2 can exhibit
considerable, doping-sensitive circular polarization. The spatially indirect excitons with momentum-dark nature
and highly tunable circular polarization may provide a firm basis for the understanding and engineering of
technological applications in photonics and optoelectronics.
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Excitons, hydrogen-atom-like electron-hole pairs bound
by their mutual Coulomb interaction, play an important role
in a wide variety of intriguing optoelectronic properties of
materials [1–4]. Depending on whether the wave functions
of electrons and holes are spatially separated, excitons can
be divided into two types: spatially direct and indirect exci-
tons. Because of the separation of the electrons and holes,
spatially indirect excitons have a much longer lifetime than
spatially direct excitons and are predicted to exhibit a wide
spectrum of emergent physical phenomena, including but not
limit to quantum-confined Stark effect [5–7], Bose-Einstein
condensation [8–14], strongly correlated excitonic insulator
states [15–17], high-temperature superconductivity [18], val-
ley physics [19–21], and dissipationless exciton transistors
[22–24]. The recent emergence of two-dimensional transi-
tion metal dichalcogenides (TMDCs) and their van der Waals
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(vdW) heterostructures offers an unprecedented platform to
realize spatially indirect excitons. Indeed, spatially indirect
excitons have thus far been demonstrated in a wide variety of
TMDC homo- and heterostructures [19], such as MoS2/WS2

[25–27], MoS2/WSe2 [28,29], MoSe2/WSe2 [20,22,30–33],
and bilayer MoS2 [7,34–39]. Specially, owing to the strongly
reduced dielectric screening, spatially indirect excitons in
homo-/heterobilayers of TMDCs possess substantial binding
energies and show crucial advantages for applications, for
example, superfluidity at high temperature [9].

To date, the studies of spatially indirect excitons have
mainly focused on the momentum-bright species with elec-
trons and holes localized in the same valley of the Brillouin
zone (BZ) [7,19–25,29–42]. On the other hand, because of
the existence of multiple electronic valleys, TMDC homo-
and heterobilayers can also exhibit spatially indirect excitons
with momentum-dark nature (that is, electrons and holes are
from different valleys of the BZ) [6,28,43–45]. Since elec-
trons and holes are further separated in momentum space,
spatially indirect intervalley excitons, in principle, can possess
a longer lifetime than spatially indirect but momentum-direct
excitons and represent an advantageous scenario for numerous
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FIG. 1. (a) Orbital projected band structures of bilayer WSe2. Symbol size is proportional to its population in corresponding state. (b)
Schematic image of the equivalent positions of spin-up wave functions at K/K′ (red ellipses), �/�′ (blue ellipses), and � points (green ellipse)
in real space. d1−3

⊥ denote vertical distances between different wave functions. (c) Schematic of h-BN encapsulated bilayer WSe2 device.

theoretical, experimental, and technological advances. How-
ever, in contrast to the well-studied spatially indirect excitons
with momentum-bright features, experimental progress on
spatially indirect intervalley excitons is still largely limited.

In this paper, we demonstrate three types of spatially
indirect intervalley excitons (i.e., two �-K transitions, one
�-� exciton, and their phonon replicas) and their quantum-
confined Stark effects in hexagonal boron nitride (h-BN)
encapsulated bilayer WSe2 through the combination of elec-
tric field-dependent photoluminescence (PL) measurements
and density functional theory (DFT) calculations. The energy
order between the three types of spatially indirect interval-
ley excitons can be switched by an electric field, owing to
their different electric dipole moments. Interestingly, these
spatially indirect intervalley excitons in bilayer WSe2 show
considerable negative circular polarization that is highly tun-
able with electron doping. Our results not only provide a
complete understanding of the puzzling multiplet emissions in
WSe2 bilayers but also present possibilities for valleytronics,
high-temperature superfluidity, and advanced functionalities
in photonics and optoelectronics.

Among various TMDCs, bilayer WSe2 provides a promis-
ing platform for spatially indirect intervalley excitons. First,
for bilayer WSe2, the conduction band minimum is located
at the � (�′) points of the BZ, while the critical points of
the valence band are at K/K′ and �, as shown in Fig. 1(a)
[46–49]. Consequently, the lowest exciton transition in bilayer
WSe2 should be momentum-indirect �-K or �-� excitons,
in marked contrast to the momentum-direct K-K transition in
the monolayer case. Second, as the Bloch states at conduction
band � and valence bands K and � have distinct orbital
compositions [Fig. 1(a)], their wave functions show different
interlayer hybridization and reside at different positions in
real space [Fig. 1(b)] (Supplemental Material [50]) [47,51].
Therefore, momentum-indirect �-K and �-� excitons are
also spatially indirect with finite out-of-plane electric dipole
moments. Third, because of the substantial exciton-phonon
coupling and the inevitable existence of defects [52–57], �-K

and �-� transitions in bilayer WSe2, in principle, can be
activated by phonon/defect scattering and show strong PL
responses. Although there have been some studies on spatially
indirect intervalley excitons in bilayer WSe2 [6,43,58–61],
their underlying origin remains equivocal. In addition, previ-
ous researchers have reported only one type of �-K exciton
[6,43], the other type of �-K transition and the �-� exciton
have not been revealed.

We fabricated high-quality h-BN encapsulated bilayer
WSe2 devices by a vdW-mediated dry transfer method (see
Supplemental Material [50] for more details). Few-layer
graphene was used as both the bottom and top gate electrodes
to further screen the charged impurities on SiO2 substrates and
improve the device quality [Fig. 1(c)]. Three h-BN encapsu-
lated bilayer WSe2 devices (labeled as D1, D2, and D3) were
studied, showing similar behavior (see Supplemental Material
[50] for more details). Unless otherwise specified, the data
presented here are taken from device D1 in a high vacuum at
10 K, excited by 1.96 eV (633 nm) radiation. The dual-gated
devices enabled us to independently tune the vertical electric
field (Ez) and doping density (n0) (Supplemental Material
[50]).

Figure 2(a) shows the PL spectrum of bilayer WSe2 with-
out applying gate voltages. Apart from the momentum-direct
K-K transitions at ∼1.69 eV (X0), seven lower energy peaks in
the range of 1.50–1.65 eV (black dotted box), corresponding
to the momentum-indirect transitions, can be clearly observed
[6,59]. It is noteworthy that benefiting from the high quality
of our samples, the number of momentum-indirect excitons
revealed here is larger than that previously observed [6].
As we mentioned above, the momentum-indirect excitons in
bilayer WSe2 should also be spatially indirect. To confirm
this, we performed electric-field-tunable PL measurements.
Figure 2(b) depicts the color plot of PL spectra as a func-
tion of Ez. Obviously, all the momentum-indirect excitons
are highly tunable with Ez, evidencing the quantum-confined
Stark effects and their spatially indirect nature. Note that
the emission energy of K-K transition X0 remains unchanged
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FIG. 2. (a) Photoluminescence (PL) spectrum of device D1 and its fitting under zero gate voltage. (b) Contour plot of the PL spectra as
a function of photon energy (bottom axis) and Ez (left axis). n0 remains unchanged. (c) First-order energy derivative of (b). Spatially indirect
intervalley excitons are labeled as X�K (X��), X 1

�K (X 1
��) and X 2

�K (X 2
�� and X 3

��) in sequence of decreasing emission energy. (d) Extracted
emission energy as a function of Ez from (c) with red (X�K and X 1,2

�K ) and blue (X�� and X 1−3
�� ) dashed lines.

with Ez (Supplemental Material [50]). To better resolve the
fine features, we plotted the first-order derivative of intensity
( ∂I
∂E ) [Fig. 2(c)]. Figure 2(d) displays the energies of different

spatially indirect intervalley emissions as a function of Ez,
extracted from Fig. 2(c). The spatially indirect intervalley ex-
citons in bilayer WSe2, at first glance, can be divided into two
types: one [blue dashed lines in Fig. 2(d)] with cross-shape
features and the other [red dashed lines in Fig. 2(d)] with a
conversion from nonlinear Stark shift at small |Ez| to linear
Stark shift at large |Ez|.

We tentatively assigned the former (latter) type of spatially
indirect intervalley excitons as �-� (�-K) transitions. Note
that, here, we use �-K transitions to denote all the possible
transitions between electrons at �/�′ and holes at K/K′ and
the same for �-� transitions. We extracted the vertical dis-
placement of these excitons from Fig. 2(c) using d⊥ = − ∂E

e·∂EZ
,

where E is the emission energy, and e is the elementary charge.
Note that the sign of d⊥ represents the direction of the electric
dipole moment: positive (negative) means vertical upward
(downward). For �-� transitions, the d⊥ is nearly fixed at
±1.40 Å [purple dots in Fig. 3(a)]. For �-K transitions, the d⊥
is ∼ ± 1.80 Å at zero electric field; then it gradually increases
with the electric field; and finally, it saturates at ±4.50 Å
[yellow dots in Fig. 3(b)].

To support our assignment, we then performed DFT cal-
culations to derive the equivalent positions of spin-up/down
wave functions at conduction band � and valence bands K
and �. The equivalent position of a wave function is defined

as rz = ∫ +∞
−∞ r|ϕ(r)|2dr, where |ϕ(r)|2 denotes the probabil-

ity density of wave function ϕ(r) at position r. The origin
point (positive direction) is set as the midpoint between the
two layers (vertical upward). For spin-up wave functions at
conduction band � (�′) and valence bands K (K′) and �, the
calculated equivalent positions at zero electric field are rz =
−0.22t (0.22t ), −0.48t (0.48t ) and 0, respectively [Fig. 1(b)],
where t = 6.6 Å is the interlayer distance of bilayer WSe2.
For spin-down wave functions, the equivalent positions can
be obtained simply by time-reversal symmetry (Supplemen-
tal Material [50]). It is worth noting that the equivalent
positions of ±0.48t indicate the virtually suppressed inter-
layer hybridization and spin-layer locking for holes at K/K′
[62–64].

For �-� transitions, there are two paths with equal transi-
tion probability [Fig. 3(c)]. One is from spin-up electrons at
� to holes at � with d⊥ = rz(�) − rz(�↑) = 1.45 Å, and an-
other is from spin-down electrons at � to holes at � with d⊥ =
rz(�) − rz(�↓) = −1.45 Å. Here, we take transitions from �

to � as an example; transitions from �′ to � could give the
same results (Supplemental Material [50]). Remarkably, d⊥
obtained by first-principles calculations (±1.45 Å) is in good
agreement with the experiments (±1.40 Å), confirming our
assignment of �-� excitons [Fig. 3(a)].

For �-K transitions (here, we focus on spin-up holes at the
K valley), there are four possible transition paths [Fig. 3(d)],
depending on the spin and valley configuration of carriers.
It is noteworthy that spatially indirect intervalley excitons
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FIG. 3. (a) Experimental (purple dots) and calculated (dashed lines) vertical displacements of X�� as a function of Ez. (b) Experimental
(yellow dots) and theoretically calculated (dashed lines) vertical displacements of X�K vs Ez. (c) and (d) Possible transition configurations
of (c) X�� and (d) X�K . d⊥ of each configuration is denoted. Red (blue) curves represent spin-up (spin-down) bands. Valence � band is
spin-degenerated. rz denotes the equivalent position of wave function at zero electric field.

with spin-triplet configuration in bilayer WSe2 may be bright
because of the broken out-of-plane mirror symmetry [65].
Among the four possible transitions, two of them (i.e., tran-
sitions associated with spin-down electrons at � and spin-up
electrons at �′) have a large d⊥(∼−0.70t = −4.62 Å), while
the other two (i.e., transitions associated with spin-up elec-
trons at � and spin-down electrons at �′) have a small
d⊥(∼−0.28t = −1.85 Å) [Fig. 3(d)]. According to the spatial
inversion symmetry, we know that, for spin-up holes at the
K′ valley, there are also four possible transitions but with
opposite d⊥: two of them with a large positive d⊥ (∼4.62 Å)
and the other two with a small positive d⊥ (∼1.85 Å) (Sup-
plemental Material [50]). For �-K(K′) transitions associated
with spin-down holes, we can obtain similar results (Supple-
mental Material [50]). Again, a perfect agreement between
theoretically calculated values and experimental results is
obtained: d⊥ = ±1.85 and ±4.62 Å obtained by DFT cal-
culations match the experiments under zero electric field
(±1.80 Å) and large electric fields (±4.50 Å) well [Fig. 3(b)].
Note that first-principles calculations show that d⊥ change
slightly with Ez [Figs. 3(a) and 3(b)]. For example, the large
d⊥ of �-K transition changes from ±4.62 Å at zero electric
field to ±4.50 Å at Ez = 0.2 V/nm, which is more consistent
with our experimental results [Fig. 3(b)]. In short, we reveal
three types of spatially indirect intervalley excitons: two �-K
transitions with different d⊥ and one �-� exciton, providing a
complete understanding of the multiplet emissions in bilayer
WSe2.

Remarkably, our results manifest three unique features
for these spatially indirect intervalley excitons. First, from
the comparison of experimental results and first-principles
calculations, it can be known that �-K transition is domi-
nated by the one with small d⊥ at Ez = 0 and then gradually

becomes dominated by the one with large d⊥ as |Ez| increases.
Such an exotic characteristic of the �-K transition can be
understood as follows. Since the wave functions of electrons
and holes overlap more, �-K excitons with small d⊥ pos-
sess larger binding energy than those with large d⊥. As a
result, �-K excitons with small d⊥ have a lower energy and
dominate the emission when Ez = 0 (Supplemental Material
[50]). When Ez is applied, the larger Stark shift would lead
the �-K transition with large d⊥ to having a lower energy and
thus more occupancy than that with small d⊥. Consequently,
the �-K transition with large d⊥ would gain an increasing
contribution and eventually dominate the emission under a
strong electric field (e.g., |Ez| > 0.1 V/nm). Note that, under
an intermediate electric field, the emission is a mixed state,
contributed by both �-K transitions with large and small d⊥.
Second, for both �-K and �-� transitions, there are a series
of replicas, labeled as X�K (X��), X 1

�K (X 1
��) and X 2

�K (X 2
��

and X 3
��) in sequence of decreasing emission energy. For the

two sets of highest-energy transitions (i.e., X�K and X��), the
emission intensities are much darker than that of their replicas
at lower energy (i.e., X 1,2

�K and X 1,2,3
�� ) [Fig. 2(b)], indicat-

ing that X�K/X�� and X 1,2
�K/X 1,2,3

�� have different origins. We
tentatively attribute X�K (X��) and X 1,2

�K (X 1,2,3
�� ) to primary

�−K (�−�) transitions activated by defect scattering and
their phonon replicas, respectively. Notably, the energy dif-
ference (∼42 meV) between the primary X�K (X�� ) and the
phonon replica X 2

�K (X 3
��) that dominates the emission out-

strips the single phonon energy in WSe2 (∼37 meV) [56,66].
This indicates that phonon replicas come mainly from two-
/multiphonon scattering, rather than one-phonon scattering.
One plausible reason is that two-/multiphonon processes pos-
sess more scattering paths than one-phonon scattering. Third,
X�� is ∼18 meV lower than X�K under zero electric field. This
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FIG. 4. (a) Photoluminescence (PL) spectra of device D2 under σ+ (red line) and σ− (black line) detections, excited by σ+ light. (b) The
degree of circular polarization (DOP) corresponding to (a) as a function of emission energy. DOPs calculated from the measured (blue line)
and Lorentz-fitted intensities (orange dots) agree well with each other. (c) Contour plot of the DOP as a function of photon energy (bottom
axis) and n0 (left axis). Ez remains unchanged. (d) The DOP vs n0, calculated from the integral intensity in the energy range from 1.45 to
1.60 eV. n0 denotes the doping density induced by gate voltage.

seems a counterintuitive result because the valence � valley is
located below the valence K valley [Fig. 1(a)] [6,49], which
makes it natural to expect X�� to have higher emission energy
than X�K . In fact, the observed transition energy is determined
by the difference between the electronic bandgap and the
exciton binding energy rather than electronic bandgap only.
Since the effective mass of holes at the � point (∼1.01 me;
me is the free electron mass) is much larger than that at the
K point (∼0.27 me) [46,60], X�� possesses a larger binding
energy than X�K , and thus, it can become the lower energy
excitonic state.

Finally, we study the valley properties of spatially indi-
rect intervalley excitons in bilayer WSe2. Figure 4(a) shows
the helicity-resolved PL spectra of device D2 for cocircu-
larly (red) and cross-circularly polarized detections (black),
excited by σ+ radiation. We quantify the degree of circular
polarization as DOP = Ico−Icross

Ico+Icross
, where Ico and Icross denote

the intensities detected under co- and cross-circularly po-
larized configurations, respectively. Figure 4(b) shows the
DOP against the photon energy: the blue line is calculated
directly from the measured intensities, while the orange dots
present the DOP of spatially indirect intervalley excitons cal-
culated from the fitting intensities. It is explicit that DOPs
calculated from the measured and Lorentz-fitted intensities
of each exciton peak agree well with each other. Thus, for
simplicity, all the following DOPs are calculated directly
with the measured intensities. Obviously, both �-K and �-
� transitions evince considerable negative DOP (∼−0.2),

whereas the momentum-direct K-K transition has a positive
DOP. Furthermore, we find that the DOP of spatially indirect
intervalley excitons in bilayer WSe2 is highly tunable with
doping density n0 [Fig. 4(c)]. Figure 4(d) shows the DOP
as a function of n0, calculated with the integrated intensity
from 1.45 to 1.60 eV. The DOP almost keeps constant for
hole doping but gradually vanishes with increasing electron
doping density. Such negative, highly tunable circular polar-
ization of spatially indirect intervalley excitons may provide
device paradigms to exploit the valley degree of freedom
other than K (e.g., � and �). In-depth theoretical studies,
however, are required to fully figure out the optical selection
rules/intervalley coupling mechanisms/the role of phonons
and further the highly tunable negative circular polarization
of spatially indirect intervalley excitons in bilayer WSe2

[67,68].
During the preparation of the manuscript, we became

aware of a similar independent work by Altaiary et al. [69].
Both our work and the work by Altaiary et al. [69] clearly
uncover the underlying origin of the multiplet emissions in
bilayer WSe2, resolving previous debates. Meanwhile, our
work unveils more features. First, our results demonstrate
that there are two �-K transitions with different d⊥ and
with increasing Ez, X�K gradually changes from the one
with small d⊥ to the one with large d⊥, giving rise to
the nonlinear Stark shift, while the work by Altaiary et al.
[69] only reveals the �-K transition with large d⊥. Sec-
ond, we uncover the doping-tunable circular polarization of
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these spatially indirect intervalley excitons and their phonon
replicas, providing a firm basis for photonics and optoelec-
tronics.

In summary, we reveal three types of spatially indirect in-
tervalley excitons (i.e., two �-K transitions, one �-� exciton,
and their phonon replicas) and their giant Stark shift in bilayer
WSe2 encapsulated by h-BN. Owing to their different electric
dipole moments, the energy order and dominant luminescence
between the three types of spatially indirect intervalley exci-
tons can be switched by a vertical electric field. Remarkably,
these spatially indirect intervalley excitons in bilayer WSe2

show considerable negative circular polarization that is highly
tunable with doping density. Our results not only provide a
deep understanding of the multiplet momentum-dark emis-
sions in bilayer WSe2 but also hold a promising future for
dissipationless exciton transport, high-temperature superfluid-
ity, and valley-functional optoelectronic devices with multiple
quantum degrees of freedom.

All data needed to evaluate the conclusions in the paper are
present in the paper and/or the Supplemental Material [50].
Additional data related to this paper may be requested from
the authors.
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