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This study introduces a novel artificial intelligence (AI) force field, namely a graph-based pre-trained
transformer force field (GPTFF), which can simulate arbitrary inorganic systems with good precision
and generalizability. Harnessing a large trove of the data and the attention mechanism of transformer
algorithms, the model can accurately predict energy, atomic force, and stress with mean absolute error
(MAE) values of 32 meV/atom, 71 meV/Å, and 0.365 GPa, respectively. The dataset used to train the model
includes 37.8 million single-point energies, 11.7 billion force pairs, and 340.2 million stresses. We also
demonstrated that the GPTFF can be universally used to simulate various physical systems, such as crys-
tal structure optimization, phase transition simulations, and mass transport. The model is publicly
released with this paper, enabling anyone to use it immediately without needing to train it.

� 2024 The Authors. Published by Elsevier B.V. and Science China Press. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Molecular dynamics (MD) solves Newton’s equations of motion
to monitor particle positions and velocities as a function of time,
and can simulate phenomena such as protein folding, chemical
reactions, and phase transitions, offering insights into the behav-
iors of materials from the atomistic level [1–6]. The method is lim-
ited primarily to the accuracy of the force fields, which represent
how the atoms interact with each other at the microscopic scale.
Improving the force fields is a central topic for the MD community.
The MD method is presently undergoing a drastic transformation
when artificial intelligence (AI) and high-throughput computation
are introduced: the AI allows the force field to have several magni-
tudes more parameters to outperform the traditional analytic force
field function form; the high-throughput computation creates the
dataset for AI model training process, level-up the accuracy of
the force fields [7,8]. Recently, the raising of AI force fields has
improved the accuracy and applicability of force fields notably,
propelling MD to a stage where simulations can be accelerated
by up to 106 times compared to the efficiency of density functional
theory (DFT) [9] without sacrificing accuracy too much [10–13].
The path forward for the MD method is clear — the key is to
develop a powerful interatomic force field based on AI and data.
In the past, significant progress has been achieved in developing
the AI force field, which can be divided into three stages. At the
early stage, people focused on creating effective mathematical
algorithms and descriptors to capture the key physics of inter-
atomic interactions by working with a small dataset. For instance,
the Smooth Overlap of Atomic Positions (SOAP) descriptor-based
Gaussian approximation potential (GAP) [10,14] is of this kind,
and there are many successors such as DeepMD [11], SNAP [15],
NNP [12,13], and so on [16–19]. Subsequently, the emergence of
neural networks and the expansion of available datasets propelled
the AI force field to an elevated level. This advancement involved
an increase in the number of parameters and data, leading to sub-
stantial improvements in model accuracy without requiring expli-
cit descriptors. Examples of this stage include MegNet [20],
DimeNet [21], SchNet [22], CGCNN [23], and ALIGNN [24]. More
recently, models for atomistic materials science have progressed
to a universal force field stage, necessitating the incorporation of
a significant trove of data from both equilibrium and nonequilib-
rium states and an efficient training process. The obtained force
field at this stage, such as M3GNet [25], CHGNet [26], PFP [27],
and ALIGNN-FF [28], can be universally applied to nearly any
close-to-equilibrium system.

As indicated by several existing pieces of literature, the progress
of the AI force field is predominantly driven by advancements in
data. Previously, Liang et al. [29] showcased that model accuracy
increases marginally with the growth of data points, following a
power law, meaning that increasing the size of the dataset by
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one magnitude can improve the model accuracy twice (reduce to
half of the mean average error). Deepmind’s GNoME project [30]
also supports this observation, suggesting that model improve-
ment can be achievable through the inclusion of more data. On
the other hand, the quality of data is crucial, but it is usually chal-
lenging to measure and benchmark the quality of the dataset quan-
titatively. The Materials Project [31], while not the largest
computational DFT dataset, is highly valued for its superior data
quality compared to numerous other available datasets
[20,23,24], including some larger open-source alternatives [32].
Meanwhile, the AI algorithm itself is rapidly evolving in tandem
with the recent advances in vision and language models [33,34].
Nowadays the algorithm developed for fundamental models can
easily incorporate billions, if not trillions, of parameters [35]. This
suggests that the AI force field, which usually has less than 1 mil-
lion parameters, can be further improved if a sufficiently large,
good-quality dataset can be obtained.

In this study, we would like to announce a new AI force field,
namely graph-based pre-trained transformer force field (GPTFF),
aiming to showcase the effectiveness of incorporating a large data-
set, encompassing 37.8 million energies, 11.7 billion force pairs,
and 340.2 million stresses, and beneficial of leveraging the atten-
tion mechanism inherent in transformer algorithms [36]. Through
this approach, we have successfully developed a pre-trained trans-
former model capable of accurately predicting the energy, atomic
forces, and stress of any given materials system, achieving the
mean absolute error (MAE) values of 32 meV/atom, 71 meV/Å,
and 0.365 GPa for energies, forces, and stress, respectively. Com-
pared to the existing models, GPTFF can achieve better generaliza-
tion. Furthermore, we have demonstrated its capacity for solving
various physical science problems, such as optimizing structures
of arbitrary compounds, simulating phase transition of a metal sys-
tem under external strain, and investigating mass transportation
phenomena in ionic compounds.
Fig. 1. Schematic of the model architecture. Information such as element, bond
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2. Methods

2.1. Model architecture

For the model construction, we employ graph neural networks
(GNNs) [37–39] to represent crystal structures, as illustrated in
Fig. 1. Like many pioneer force fields that require the construction
of atomic coordinate descriptors to ensure rotational, translational,
and permutation symmetries [10,11,15], using GNNs to represent
crystal structures can easily satisfy these symmetry relationships.
Each atom is projected into a high-dimensional space according
to its element type and is represented in the form of an embedding
vector. The geometric structure of each atom’s local environment,
such as the bond lengths between atoms, is represented by the
edges in the GNN, forming an edge vector. The edge vector is rep-
resented by concatenating the node vectors representing the two
atoms and the vector of information about the distance between
them.

Additionally, we incorporate bond angle information related to
three-body interactions into the model, achieved by concatenating
the node and edge vectors of the atoms forming the bond angle.
This allows the model to further learn the interaction relationships
between different atomic nodes and edge vectors, thereby improv-
ing the model’s predictive power significantly. During the high-
dimensional representation process of the bond angle, we directly
consider the neural network as a scalar function, thereby mapping
the cosine value of the bond angle from one dimension to high
dimensions.

In the model prediction and inference process, the vector repre-
sentation within the atomic cutoff radius is predicted by the GNN
into the form of atomic energy, and the sum of the atomic energies
finally yields the total energy of the system. For the calculation of
atomic forces, we use the method of automatic differentiation [40].
The force on an atom can be obtained from the negative gradient of
, angles and transformer are represented and updated in the graph block.
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the total energy E with respect to the atomic coordinates, i.e.,

F
!

i ¼ @E

@ x!. The expression for stress calculation is: r!¼ 1
V

@E

@ S
!, where

V represents the volume of the system, and S
!

represents the strain
of the system.

2.2. Dataset

The training dataset is provided by Atomly.net team, which
includes the trajectory of structural optimization of 2,234,767
crystal structures using DFT. All the calculations are conducted uti-
lizing the consistent calculation parameter to yield a dataset with
good quality, e.g., GGA-PBE [41] is selected as the pseudopotential,
the energy cutoff is 520 eV, and the 5.4 version of the POTCARs as
implemented in the VASP code [42–45] is employed for all the
calculations.

Overall, the dataset contains 37.8 million single-point energies,
11.7 billion atomistic force vectors, and 340.2 million stresses.
Fig. 2a displays the statistics of the chance of the appearance of
each element, and the chance of coappearance of two elements.
Within the dataset, there are 349,043 single-point energies from
the equilibrium state, and 37.4 million single-point energies from
the nonequilibrium states, roughly 27.6 times larger than the MPtrj
dataset [26]. The larger circle size in Fig. 2 denotes the higher fre-
quency of appearance of the given element. The shade of the
strings represents the likelihood they coexist in a single compound.
Fig. 2a demonstrates that the dataset has an evenly distributed
sampling of the entire phase space, covering a large and less biased
structural space and chemical space.

2.3. Training process

The dataset was divided into training, validation, and test sets.
In detail, as the dataset is gigantic, we randomly pick up 100,000
Fig. 2. Element and training data distribution in atomly database. The training data cont
structure optimization via DFT calculation.
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data points for validation and test sets separately, for faster valida-
tion. It is ensured that the crystal structures in the test set never
co-appear in the training and validation sets to yield a valid model.
We do not truncate or remove any data points in our dataset to
ensure that the model has a good generalization. The AdamW
[46] optimization is employed in our model, and a sampling learn-
ing method is adopted, where each epoch randomly samples about
1 million data from the training set for model training, with a total
of 500 epochs.

Given the inherent limitations of GNNs, there is a saturation
point at which increases in model depth and parameters fail to fur-
ther enhance model performance [47]. To address this issue, we
have incorporated Transformer [36] modules into our model. This
integration serves to boost the number of parameters, enabling the
model to learn a greater amount of latent information within the
data. The model currently has 502,465 parameters and can be
easily scaled to a larger model with more parameters, such as more
than 1 million parameters. Transformers demand a relatively small
learning rate during the training process to ensure model stability
[48]. Consequently, we adopted an initial learning rate of 2 � 10–4

in our training process, which gradually decayed to 5 � 10–6

toward the end of the training. This strategy allows for a more con-
trolled and stable training process, minimizing the risk of over-
shooting the optimal solution and ensuring a robust and reliable
model performance.

3. Results and discussion

3.1. Model performance

The GPTFF can accurately predict the energies, forces, and stress
for any atomistic configuration, and hence can serve as a valid uni-
versal force field. In Fig. 3a–c, it is evident that GPTFF demonstrates
an energy error as low as 32 meV/atom, force error of 71 meV/Å,
ains 2,234,767 compounds which generated about 37.8 million single points during

http://Atomly.net


Fig. 3. (a–c) The evaluation of MAE results and data distribution of universal force field model on energy, force, and stress regression targets in the test dataset. (d, e) The
model performance comparison of our model (d) vs. CHGNet (e). The validation set consists of new structures that do not appear in either the Materials Project or the GPTFF
training set. The shades of the colors indicate the density of the data points. (f) The efficiency and scalability of the model.
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and system stress error of 0.365 GPa on the test dataset. These
results outperform both the M3GNet (MAE=35 meV/atom) and
CHGNet (MAE=33 meV/atom, without magmom) due to our AI
force field being constructed from a substantially large dataset,
enhancing the model’s overall generalizability.

For a testing purpose, we conducted additional performance
tests on our model and CHGNet for comparison, utilizing a small
testing dataset of 16,653 structures, in which all the compounds
are new and do not exist in either the Materials Project or our
training dataset. As depicted in Fig. 3d, e, in this test, the accuracy
of CHGNet drops to 87 meV/Å for atomic forces, while our model
achieved a higher prediction accuracy of 66 meV/Å.

As shown in Fig. 3f, the GPTFF model demonstrates impressive
efficiency and scalability. The results indicate that the model can
perform inference for 1000 steps on a system with 3000 atoms
in just 500 s using a single Nvidia A100 GPU. Furthermore, the
model’s performance scales linearly, meaning that simulating
10,000 atoms for 50,000 steps would only require 1 day, or opti-
mizing the structure of 100 atoms (typically needing 200 steps)
would take just 3 s. Besides, running the GPTFF model on a CPU
typically slows down the speed by two orders of magnitude com-
pared to using a GPU, depending on the specific CPU hardware.

3.2. Application on structural optimization

One of the fundamental applications of a universal force field is
its ability to quickly optimize any given crystal structure, making it
suitable for rapid screening and relaxing unknown structures. It is
3528
common practice to create new structures by element substitution,
and element substitution will introduce strain in the system as the
size of different atom species is not the same, therefore the newly
generated structures are not in an equilibrium state, and a struc-
ture optimization process is required at this point. GPTFF can be
employed to quickly optimize these structures. To demonstrate
it, we conducted the calculation of the equation of state on the
39 structures using both the DFT and GPTFF. Those 39 compounds
cover both ionic compounds and alloys. As shown in Fig. 4, the
GPTFF can accurately calculate the equation of state of those sys-
tems and find the correct equilibrium volume (R2 = 0.996). It
implies that the GPTFF has good precision, and the model can be
universally applied to various systems to predict the equilibrium
structures and energies.

3.3. Application on MD simulation

We also conducted tests using the GPTFF to run MD simulations
for both metal and ionic compounds. Previously, it was not feasible
for empirical MD to easily and accurately simulate ionic com-
pounds as there is no accurate out-of-the-box force field for this
type of compound [26]. For the metal system, we examined the
phase transitions in titanium (Ti) from HCP to FCC due to stretch-

ing along 101
�
0

h i
direction; while for ionic compounds, we calcu-

lated the ionic conductivity of the Li cations in Li3YCl6 system,
which is a useful solid-state electrolyte material for lithium ionic
batteries.



Fig. 4. The equation of state results predicted by our universal force field. The model optimizes the structure from initial unrelaxed structure. The black dashed line
represents the final optimized result from DFT, while the red dashed line represents the volume at the equilibrium position after optimization by the force field model.

Fig. 5. (a, b) Finetuning results of energy and forces. (c) XRD results during MD
simulation. With increasing of strain in 101

�
0

h i
direction, HCP?FCC phase

transition occurs in the titanium system.
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3.3.1. Force field for Titanium (Ti)
There is existing experimental literature indicating that for the

HCP-stacked titanium system, if a tensile strain is applied in the

101
�
0

h i
crystal direction, the 101

�
0

� �
crystal plane slips, thereby

generating a 1
6 < 12

�
10 > Shockley partial dislocation [49,50]. The

generation of this dislocation exactly transforms the HCP-stacked
titanium system into an FCC-stacked titanium system. Accurately
capturing such HCP-to-FCC phase transition requires a high-
precision force field. Previously, the empirical embedded atom
potential usually had an issue distinguishing the energies of HCP
and FCC, as both structures are close-packed and have the same
first-shell coordination numbers. Generally, the empirical embed-
ded atom potential has difficulties in distinguishing two phases,
leading to the development of several modified versions of embed-
ded atom potentials to mitigate this issue [51,52]. However, none
of them can reach an accuracy close to that of DFT and capture
the HCP-to-FCC phase transition energies correctly.

As shown in Fig. 5, by utilizing the GPTFF, the HCP-to-FCC phase
transition can be very well simulated in MD runs. In the MD sim-
ulation, the system has 1008 atoms. The NVT ensemble is selected
at a low temperature of �100 K, to avoid thermodynamic distur-
bances as higher temperatures would vibrate the atoms to blur
the peaks on the XRD pattern. Fig. 5c shows the snapshot of the
crystal structures and XRD peaks during the entire HCP-to-FCC
phase transition simulation process. As the MD progresses, an
FCC phase peak starts to appear at about 38� on the XRD spectrum,
indicating the occurrence of the phase change, which can also be
seen on the atomic structures, in which the red and green regions
represent the HCP and FCC stacking respectively.

3.3.2. Force field for Li3YCl6
Fast lithium cation transportation is crucial for solid lithium

electrolytes in lithium-ion batteries [53]. A typical characteristic
of superionic conductors is that within a large temperature range,
the diffusion coefficient may follow different Arrhenius equations
at different temperature regions as the high temperature opens
up new diffusion channels, dividing the Arrhenius plots into two
3529
zones. To verify the accuracy of the universal force field in ionic
systems, we used the force field model to perform molecular
dynamics simulations on the Li3YCl6 system and calculated the
ionic conductivity at different temperatures from 300 to 700 K
(Fig. 6). Considering the volume expansion effect as well as the



Fig. 6. (a–c) Finetuning results of energy, force and stress. (d) The relationship between temperature and ionic conductivity of Li3YCl6. (e, f) Trajectory of lithium ions at 300
and 500 K.
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possible phase transitioning brought by temperature, we used the
NPT ensemble in the simulation. Since the van der Waals interac-
tions are important, especially in the Li3YCl6 system [54], we used
the optB88 [55] corrected DFT to accurately calculate the structural
data of a small amount of Li3YCl6 at different temperatures to
obtain a dataset of about 2000 snapshots, and then finetuned the
GPTFF. By adding a small amount of data, the pre-trained model
can be further finetuned to a much more accurate form of a specific
system, which is Li3YCl6 in this case.

Then, we performed molecular dynamics simulations utilizing
the finetuned model. Fig. 6d shows the ionic conductivity at differ-
ent temperatures. The ionic conductivity at 300 K calculated using
the GPTFF, which is 0.6 mS/cm, is in good agreement with the
experimental observation, which is 0.51 mS/cm [56]. Fig. 6e, f
shows that the lithium diffusion channel below transition temper-
ature is mainly concentrated in one dimension. With the tempera-
ture going up above the transition point, a new diffusion channel of
lithium cations opens up in all three dimensions. The force field
model accurately predicts a superionic transition temperature of
425 K. Under the temperature range of 230–360 K, the activation
energy as predicted from the model is 0.45 eV, in line with the
experimental observations, which is 0.40 eV [56]. The result is also
in good agreement with another AI force field [57]. These results
reflect the high accuracy of the GPTFF for the calculation of the
ionic compounds.

The emergence of the universal AI force field has opened a new
avenue for theoretical materials science and chemistry. These
models facilitate rapid, high-precision theoretical simulations
and property predictions for arbitrary systems, reshaping the
methodologies that were built on top of traditional DFT computa-
tions and empirical force fields. Harnessing the advance of the AI
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force field, it becomes feasible to conduct high-efficiency and
high-accuracy MD calculations.

3.4. Perspectives

In this work, we have developed the GPTFF and demonstrated
its accuracy and convenience in property prediction and atomic
scale simulation. Leveraging the dataset that covers large chemical
and structural phases of inorganic compounds, the GPTFF model
endows superior generalization capabilities. In principle, a critical
determinant in the training process is not solely the model archi-
tecture but more importantly, the quality of the data employed,
suggesting that the dataset is the fundamental of this type of
research, hence credit should be given to people who build up
the dataset.

The GPTFF employs a unique network architecture that ensures
the model is lightweight yet powerful, enabling fast and accurate
inference even on personal devices like laptops. Previously, run-
ning MD simulations for ionic compounds was a challenging task.
However, GPTFF instantly provides a solution, as it is a universal
machine learning potential that can simulate nearly every inor-
ganic compound.

Currently, the supervision labels for GPTFF include energy,
atomic forces, and system stress, which indeed utilize only a small
amount of information generated by the DFT runs, whereas the
information about electron-related properties is mostly ignored
at the current level of models. In the forthcoming efforts, the com-
munity may aim to enhance the robustness of atomistic AI models
by incorporating more data and labels. CHGNet has demonstrated
that plugging the magnetic moments into the model can level up
the predictive power, and this would be a useful strategy. In the
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future, we plan to refine the self-attention mechanism within the
transformer architecture to include more geometric information
and to increase the model parameters. These would progressively
make GPTFF more powerful. More rigorous tests will be performed
[58,59], and the results will be published in separate papers in the
future.

4. Conclusion

The physical science community has a keen interest in develop-
ing a universal force field that possesses outstanding accuracy and
broad applicability across all compounds. Our paper introduces an
innovative artificial intelligence universal force field named the
GPTFF, which establishes a new standard for simulating inorganic
systems with unprecedented precision and adaptability, enabling
the direct simulation of arbitrary inorganic materials. By harness-
ing the power of GPTFF, researchers can accurately simulate the
behavior of a wide range of inorganic compounds, approaching
the accuracy of density functional theory, while achieving speeds
similar to those of classical molecular dynamics, speeding the sim-
ulation speed by �1 million times compared to DFT. It is demon-
strated that GPTFF can optimize arbitrary crystal structures
rapidly and can be used for large-scale atomic simulation, which
enables further exploration of larger materials phase spaces for
speeding up the discovery of new materials. This universal force
field has the potential to significantly advance the field of physical
science to new heights.
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