物理学报 Acta Physica Sinica

光解水的原子尺度机理和量子动力学 申钰田 孟胜

Water photosplitting: Atomistic mechanism and quantum dynamics

Shen Yu-Tian Meng Sheng

引用信息 Citation: Acta Physica Sinica, 68, 018202 (2019) DOI: 10.7498/aps.68.20181312 在线阅读 View online: http://dx.doi.org/10.7498/aps.68.20181312 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2019/V68/I1

您可能感兴趣的其他文章 Articles you may be interested in

掺杂对金属-MoS2界面性质调制的第一性原理研究

First principles investigation of the tuning in metal-MoS₂ interface induced by doping 物理学报.2017, 66(11): 118201 http://dx.doi.org/10.7498/aps.66.118201

金纳米棒三聚体中的等离激元诱导透明

Plasmon induced transparency in the trimer of gold nanorods 物理学报.2016, 65(21): 217801 http://dx.doi.org/10.7498/aps.65.217801

银纳米颗粒及阵列光传输性质的理论研究

Theoretical study on the optical response features of silver nanoparticles and arrays 物理学报.2016, 65(20): 207802 http://dx.doi.org/10.7498/aps.65.207802

B,P单掺杂和共掺杂石墨烯对O,O₂,OH和OOH吸附特性的密度泛函研究

Density functional study on the adsorption characteristics of O, O₂, OH, and OOH of B-, P-doped, and B, P codoped graphenes 物理学报.2016, 65(1): 018201 http://dx.doi.org/10.7498/aps.65.018201

Ag-Au二元纳米微粒吸收谱的计算

Calculation of absorption spectrum of silver-gold bimetallic nanoparticles 物理学报.2014, 63(11): 117802 http://dx.doi.org/10.7498/aps.63.117802

Ì

中国物理学会 中国科学院物理研究所 Chinese Physical Society Institute of Physics, Chinese Academy of Sciences

物理学报

第68卷 第1期 2019年1月

目 次

特邀综述

017101	II-VI族稀磁半导体微纳结构中的新 Muhammad Arshad Kamran	數子磁极(杨高岭	k子及其发 刘瑶斌	光 石丽洁	······	雷宝华	钟海政	 • 邹双阳 • 邹炳销
	专题:水科学重大关切问题研	研究	, , , , , , , , , , , , , , , , , , , 			<u>у</u> <u></u>	1 4 20	
018202	2 光解水的原子尺度机理和量子动	力学		•••••		•••••	申钰	田 孟胜
016803	;界面水与催化	• • • • • • • • • •	• • • • • • • • • • • •				胡钅	钧 高嶷
015101	水溶液中结合水的定义与量化		•••••	• • • • • • • • • • •			王强	曹则贤
018801	低维限域结构中水与物质的输运	· · · · · · · · · · · · · · · · · · ·	•••••	•••••	•••••	张锡書	序 闻利→	平 江雷
013101	生物分子结合水的结构与动力学	研究进展		叶树孚	秦 李传召	3 张佳慧	责 谈军	军 罗毅
019201	基于加气水滴灌的土壤环境调节	机理研究		杨ネ	每军 仵山	▲ 方海→	阝 胡钧	侯铮迟
018203	;水合物研制、结构与性能及其在自	能源环境□	中的应用			朱金龙	赵予生	靳常青

016802 表/界面水的扫描探针技术研究进展 尤思凡 孙鲁晔 郭静 裘晓辉 江颖

综述

018101 悬浮液凝固研究进展 ………… 游家学 王锦程 王理林 王志军 李俊杰 林鑫

总论

010301	三维各向同性谐振子的几何动量分布	刘全慧	张梦男	肖世发	寻大毛
010501	压电材料双曲壳热弹耦合作用下的混沌运动			李林利	薛春霞

电磁学、光学、声学、传热学、经典力学和流体动力学

014301 深海海底反射会聚区声传播特性 张鹏 李整林 吴立新 张仁和 秦继兴

气体、等离子体和放电物理

015201 光子与相对论麦克斯韦分布电子散射的能谱角度谱研究 …………………………………………李树

凝聚物质:结构、力学和热学性质

016101 电阻率与强度性能的关联及铜合金性能分区 ... 李鸿明 董闯 王清 李晓娜 赵亚军 周大雨

凝聚物质:电子结构、电学、磁学和光学性质

..... 俞洋 张文杰 赵婉莹 林贤 金钻明 刘伟民 马国宏俞浩健 姚方男 代旭东 曹进 田哲圭 **017301** AlGaN插入层对InAlN/AlGaN/GaN异质结散射机制的影响 ··········· 陈谦 李群 杨莺 017401 第一性原理方法研究 N-Pr 共掺杂 ZnO 的电子结构和光学性质 ………………………… 王宗 侯兴元 潘伯津 谷亚东 张孟迪 张凡 陈根富 任治安 单磊 017501 基于倾斜纳磁体翻转倾向性的与(或)逻辑门应力模型 ……………………………杨安平 王雨伟 张少伟 李兴隆 杨志杰 李耀程 杨志勇

物理学交叉学科及有关科学技术领域

文章图片的彩色效果详见网刊

扫码阅读 电子版

专题: 水科学重大关切问题研究

编者按 水是世界中最重要也是最为奇特的物质.由于水的性质都具有反常的特点,水的理论和实验研究自身都 极具挑战性,水参与各种物理、地质、化学、生命等过程,水的科学利用关系着人类的命运,水科学研究的重大意义是 显而易见的.过去十年来,中国科学院组织相关研究所投入了可观的人力、物力全方位开展水科学研究,取得了一批 国际水平的研究成果.本期"水科学重大关切问题研究专辑"收录了中国科学院物理所、化学所、上海应用物理所、国 家纳米中心和中国科学技术大学等课题组在最近一段时期的研究论文共8篇,内容涵盖光解水机理、界面水与水中的 催化、结合水的定义与量化、限域结构中水与水中物质的输运、生物分子结合水的结构与动力学、水对土壤的调节机 制、水合物的结构与利用,以及用于微观水结构研究的探针显微技术等具有重大关切的课题.我们希望通过本期水科 学专辑的发表引起我国科学界和政府部门对水科学研究的重视,吸引更多的研究人员开展水科学的研究,促进水科 学研究的蓬勃发展.

(客座编辑:中国科学院物理研究所 杨国桢)

光解水的原子尺度机理和量子动力学^{*}

申钰田¹⁾ 孟胜^{1)2)†}

(中国科学院物理研究所,北京凝聚态物理国家研究中心,北京 100190)
 2)(量子物质科学协同创新中心,北京 100190)

(2018年7月6日收到;2018年9月30日收到修改稿)

利用阳光直接将水分解为不含碳的氢气燃料和氧气是面向全球能源危机环保且低成本的解决方案.得益 于电子结构理论和量子模拟方法的进步,人们已经能够直接研究在纳米颗粒上等离激元诱导光解水过程在原 子尺度上的反应机理和超快动力学.本文简述近年来的相关工作进展.吸附在氧化物薄膜上的金纳米颗粒很 有希望成为水分解的高效新型光催化剂.在光激发条件下,水分解反应速率和光强、热电子转移之间有强相关 性.水分解速率不仅取决于光吸收强度,还受到等离激元量子振动模式的调控.这对于太阳能光解水器件中 纳米颗粒的设计有借鉴意义.我们发现液态水在金团簇等离激元催化下100 fs内就能产生氢气.超快量子动 力学模拟表明,该过程中场增强起主导作用,从金属到水反键态的超快电荷转移也扮演着重要角色.综合这 些原子尺度上的量子动力学研究,我们提出受激水分子中氢原子高速碰撞(速度远远超出其热速度)合成氢分 子的"链式反应"机理.

关键词: 光解水, 金纳米颗粒, 量子选择性, 量子动力学 PACS: 82.65.+r, 78.67.Bf, 68.43.Bc, 42.50.Ct

当前人类发展面临严峻的能源危机. 化石燃 料作为目前最主要的能源,其数量有限,预计会在

本世纪内被更加清洁、便宜、可循环的新能源所代

DOI: 10.7498/aps.68.20181312

替.人们迫切期望在数十年内实现100%可再生的 能源利用.太阳能取之不尽,成为未来最具前景的 能源选项之一.只含有氢、氧元素的水在地球上大 量存在,水被光解产生的氢气在燃烧利用后又会生 成水,不仅避免了化石燃料的碳污染,而且可以循 环利用.若可以实现高效率、低成本、安全、稳定的

†通信作者. E-mail: smeng@iphy.ac.cn

言

1 引

© 2019 中国物理学会 Chinese Physical Society

http://wulixb.iphy.ac.cn

^{*} 国家科技重大专项(批准号: 2016YFA0300902, 2015CB921001)、国家自然科学基金(批准号: 11474328, 11290164, 11774396)和 中国科学院先导专项(批准号: XDB070301)资助的课题.

光催化分解水产氢,即实现"人工光合作用",人们 就获得了可持续发展的理想能源形式.

光解水催化剂首先要有强的光吸收以俘获光 能,随后载流子要有效地分离,使激发态电子被水 吸收解离出氢原子以生成氢气.这需要催化剂吸光 后的激发态电子能量高于水还原出氢离子/氢气的 能量;若对应空穴能量低于水氧化出氧气的能量则 还能同时产生氧气.为了制取氢气,吸附在衬底上 的金属结构由于其吸光性好、具有等离激元效应而 被广泛关注.结合氧化物半导体和可产生等离激元 的金属纳米颗粒进行共催化的研究如火如荼^[1,2], 其中半导体的选择要使其能隙匹配太阳光谱^[3].

这种光解水制氢电池的工作流程如下:

 金属纳米颗粒吸光,其中电子受周期电场激 发集体振荡产生极化场,其量子化的描述即等离激 元极化子;

2) 部分等离激元通过衰减产生电子-空穴 对^[4],电子受极化电场作用从占据态跃迁至非占据 态,内部热弛豫成为热电子,在1 ps内通过电子-电 子散射分布到更低能的轨道,通过电子-声子作用 与晶格达到热平衡;

图1 目前报道的利用太阳能制氢的光电化学电池能量效率^[5]

Fig. 1. Reported solar-to-hydrogen (STH) efficiencies in multijunction photoelectrochemical cells^[5].

3) 能量匹配的热电子进入半导体的导带,再转入水分子的反键轨道使得氢原子逸散.

这种方法的问题在于只有能量足以跨越肖特 基势垒方可到达半导体的导带,这严重制约了反应 效率.目前这种光解水制氢电池通过选取催化材 料、制作多节器件构型等方法能够获得效率的进一 步改进,最高效率^[5]约20%,如图1.此外还存在 制作成本高、稳定性差、不可大面积制备、材料有毒 性等严重问题.

最近, Robatjazi 等^[6]观察到了源于金纳米颗 粒的热电子直接注入分子, 能够使光解反应直接发 生. 在光激发产生等离激元的金属纳米结构上直接 分解水, 电子不需要经过半导体转移, 有望大幅提 升催化效率. 但目前的实验实现的效率还比较低, 其关键在于要提高光吸收和载流子分离率. 理论计 算表明金属纳米颗粒的尺寸和形状对光催化活性 有影响^[7,8],但这种光解水的微观机理,尤其是原子 尺度的超快动力学过程还需要研究,此即为我们的 专注点.

二氧化钛上的金纳米颗粒在紫外、可见和近红 外光照下都表现出有效的光催化活性^[9,10].一般来 说,小的金纳米颗粒在水中很稳定,适宜于催化,如 四面体结构^[11]的Au₂₀,它的能隙1.77 eV,位于可 见光范围内,且比表面积大、低配位数的分子吸附 位点多.纳米金催化光解水的巨大潜力吸引我们进 行探究.

催化剂首先要吸附反应物——水.我们首先 讨论吸附在衬底上的金纳米颗粒的水吸附轨道的 选择性;随后基于光激发下金团簇电子状态给出催 化活性位点及水分解后氢原子的吸附位点,进一步 得到氢气合成的反应路径.我们还给出了金纳米球 在光场激发下分解水的量子模式选择性和热电子 能量与水反键轨道匹配对反应速率的影响,这对于 太阳能光解水器件中纳米颗粒的设计有借鉴意义. 我们实现了对浸泡在液态水的Au₂₀在光激发下产 生氢气过程的直接模拟,发现场增强起主要作用, 从金到水反键态的超快电荷转移也扮演重要角色. 综合这些原子尺度的量子动力学研究,我们提出了 一种源于多个水分子的氢原子受激发高速碰撞(其 速度远远超出热速度)合成氢分子的"链式反应"新 机理.

2 金纳米颗粒上水吸附的轨道选择性

2.1 衬底上的金纳米颗粒

利用原位扫描隧道显微镜 (*in-situ* STM),可 直接观察吸附于沉积在金属衬底上的氧化物薄膜 上的纳米金团簇的原子构型、电子结构等信息.在 MgO 双层 (2 monolayers, 2 ML)/Ag(001) 衬底上, 实验发现^[12],稳定的金纳米小团簇为平面结构,其 含有的金原子数目为一系列的幻数,如Au₈, Au₁₄

图 2 MgO (2 ML)/Ag(001) 上 Au₈ 纳米团簇的 (a) 侧 视图, (b) 俯视图及可能的水吸附位点 (红点), (c) Au₈ 纳 米团簇 (红线) 及衬底 MgO(黑线) 的局域电子态密度; DS 为 5d 轨道能级, QWS1—QWS4 为量子阱态.

Fig. 2. (a) Side and (b) top views of the plannar Au₈ nanoparticle on MgO (2 ML)/Ag(001), together with potential sites for water molecular adsorption (red dots); (c) the electronic local density of states (LDOS) for the Au₈ on MgO (2 ML)/Ag(001).

和 Au₁₈. 对真空中金团簇的模拟也表明 Au₈ 相较 于 Au₇和 Au₉更加稳定. 在完美的 MgO 薄膜上的 Au₈ 团簇和真空中最稳定的构型一致, 为平面结 构, 团簇中心的金原子吸附在衬底 O 原子的顶位 上^[13], 如图 2 (a) 和图 2 (b) 所示. 图中还展示了水 分子的吸附构型及可能的吸附位点 (红点).

由于纳米尺度的空间限制, 金团簇中的电子 会形成量子阱. Au₈ 团簇除了 5d 轨道能级 (d orbital states, DS) 外还存在由 s 和 p 电子形成的量子 阱态. 图 2 (c) 为金团簇和衬底 MgO 的局域电子 态密度. 按照能量上升方向, 落入 MgO 能隙中的 金团簇的量子阱态, 依次被标记为 QWS1, QWS2, QWS3, QWS4. 对于真空中或体相 MgO 上的 Au₈ 团簇, 其 QWS1 会被两个电子占据. 在 Au₈@2 ML MgO/Ag(001) 中, 由于有约 2 个电子从银衬底转移 到金团簇, QWS2 也会被占据.

2.2 水分子吸附的轨道选择性

水分子吸附在 Au₈ 周围的 MgO 格点上最为稳 定,该位点吸附能高达 600—800 meV.在离 Au₈ 远一点的 MgO 上吸附能比较小,完美的 MgO 上 则只有 360 meV.在 Au₈ 上方的吸附极不可能发 生,这是因为金原子上方水吸附能为 80—140 meV, 中心金原子上仅为 86 meV,和完整 Au(111)上水 110 meV 的吸附能相近^[14].

进一步地,我们发现稳定位点上水吸附能对 量子阱态QWS2电荷密度具有强烈的正相关性, 如图3所示. 它们的角分布(极坐标如图2(b)) 大致一致. 自由空间中Aus上的水吸附结果类 似,表明MgO衬底的影响起次要作用.实际上11 个吸附位点上水分子到镁原子的距离高度约为 2.12-2.14 Å, 几乎没有变化. 这里 Aus 上的最外 层电子填充轨道即QWS2, 其电子密度呈四瓣结 构, 波腹和波节交替. 波腹处高密度的电荷和水的 电子云耦合强烈,故而吸附能高,波节处反之.由 于分子轨道杂化深受对称性匹配的影响, 波腹处 的耦合由水分子的最低未占据分子轨道(LUMO) 态(4a1)主导,杂化之后反键态能量高于杂化前的 LUMO 态且无电子占据, 体系能量降低, 所以吸 附能与QWS2能量线性相关.波节处的耦合则由 水分子已占据的最高占据分子轨道 (HOMO)态 (1b1) 主导, 杂化形成的反键态能量较低, 且已被 电子占据,所以电子占据了成键态和反键态,体系

能量高于杂化前,吸附失稳吸附能与QWS2 能量 反线性相关^[13].水的吸附构型值得注意:由于和 量子阱态的耦合,吸附水的OH 指向带负电的金原 子,使OH键长从0.97 Å增大到1.02 Å,同时缩短 H—Au距离至2.27 Å,有利于被吸附水的分解.

图 3 (a) Au₈ 团簇的量子阱态 2 在边缘 (红虚线) 处的电荷密 度角分布; (b) 水分子吸附能的方向依赖性 Fig. 3. (a) The charge density distribution from the quan-

tum well state 2 at the periphery of Au_8 cluster; (b) orientation dependence of water adsorption energies.

3 原子尺度上水分解产生氢气光解水的步骤

在光照下, Aus 中产生等离激元.通过对 Aus 光吸收谱的分析, 电子从 DS 带到 QWS3 态的集体 激发贡献了第一个主要吸收峰的大部分, 如 Au²⁻ 的情况下高达 60.8%. 等离激元集体振荡阻尼衰减, 产生的热电子大部分分布在 QWS3, 可参与水分 解反应.其中由于水分解过程中又有约 0.6—1.4 e 的电子从银衬底转移到金团簇, 所以反应过程中 QWS3 被填充.实际上, 氢原子和 QWS3 的结合 能高达 2.7 eV, 远大于水与 QWS2 吸附能, 且与水 分解的势垒反线性相关^[13].在最佳水吸附位点, 处于激发态的金团簇分解水的势垒仅为 170 meV, 低于水分子中不对称 O—H键振动模式的零点能 (224 meV), 我们推测在光激发条件下水分子能够 自发分解.

水分解反应的末态是氢原子吸附在Au₈上, OH离开Au₈,但仍吸附在MgO上.基于Bader分 析,产物中氢原子电荷为-0.04-0.12 e,近乎中 性,称为活性氢原子;OH 电荷为-0.85 e,为阴离子^[15].要得到氢气还需要:1)两个氢原子能靠近结合;2)不同反应位点对氢原子的不断产生和收集、氢气的收集不能互相干扰;3)反应的副产物OH 也不可以阻碍反应进行.

首先,因为Au₈的催化活性仅取决于量子阱态 的局域电荷密度,已经有一个H吸附的位点上还 可以再产生第二个H.如已经吸附的一个H的S1 位点上,分解第二个水分子的势垒仅从1.05 eV变 到1.06 eV,几乎没有变化.甚至与Au₈上吸附水 形成氢键的相邻水分子也可以被有效地分解,产 生的H可以传输到Au₈.在体相MgO上这种反应 势垒^[16,17]是1.07 eV,势垒与Au₈催化的情况类似. 所以同一反应位点上可以实现多个H的产生和收 集,有助于氢原子靠近、结合生成氢气.

其次,活性氢原子在不同吸附位点间可以迁移,势垒低至140 meV,源自不同位点的H也易于 聚集合成氢气.进一步地,由于Au₈的催化活性、对 氢原子的吸附能高度局域,各位点上持续的水分解 反应、氢原子收集互不干扰.另外,对反应副产物 OH在两个水分子间扩散的模拟表明,扩散的过程 中有质子在水和OH间快速传输,类似质子在水二 聚体中的转移^[18].由于水分子间氢键的助力,势垒 仅有240 meV,所以OH可以非常容易地扩散、远离 反应位点,不会阻碍后续的水分解.作为对比,无 氢键的情况下OH扩散势垒高达600 meV.

最后, Au₈ 受光激发在DS带上产生的空穴由 于和MgO价带能量匹配, 可以有效地转移到MgO 中, 再氧化OH生成H₂O₂或O₂. 实际上MgO是良 好的空穴导体和常规的氧储存材料. 这样电子可以 通过MgO从OH不断地补充到Au₈上催化水分解, 实现光解水的完整电荷循环. 至此, 我们确认了在 Au₈上可以产生并聚集多个活性氢原子, 且活性氢 原子易于在各反应位点间迁移.

基于光解水的初步产物,我们设计了三类反应物(R),如图4:

1) 无金团簇的 MgO 表面上两个聚集的 OH;

2) Au8 上吸附在相邻位置的两个活性氢原子;

3) Au₈上吸附在同一位置的单个水分子和活 性氢原子^[15].

进而用微调弹性带方法 (nudged elastic band, NEB) 计算中间态 (T) 设计了合成氢气的三种反应 路径:

图 4 在 MgO(2 ML)/Ag(001) 上无/有金团簇的情况下 产生氢气的反应能级示意图

Fig. 4. Reaction energy profiles for $\rm H_2$ generation on $\rm MgO(2~ML)/Ag(001)$ without/with the gold cluster.

1)氢原子从氢氧根上断裂、结合成氢分子,势 垒高达1.83 eV,极不可能发生;

2) 一个活性氢原子沿金团簇边缘迁移、与另一 个结合成氢分子,势垒约0.8 eV,又由于活性氢原 子状态接近氢分子,反应末态仅比初态高0.1 eV, 极有可能发生;

3) 水分解出一个氢原子, 与同位点上活性氢原

子结合生成氢气,势全高达1.58 eV,另外由于初态 比末态能量低0.96 eV、更稳定,反应较难发生.

综上, Au₈ 光解水产生的氢气可由相邻位点上 活性氢原子迁移、结合得到.

4 金纳米颗粒催化下光诱导水分解产 生氢气的量子动力学

为了在以上静态计算的基础上更直接地研究 光解水微观反应过程,我们使用含时密度泛函的 方法研究了金纳米颗粒催化光解水合成氢气的量 子动力学过程.虽然MgO衬底可以降低水分解的 势垒,由于其能隙 > 6 eV 而无法有效吸收太阳光 或参与太阳光驱动的反应,我们为简化和降低计 算量不再模拟MgO衬底.首先探索了球形金纳米 颗粒在超快激光作用下如何催化水分解过程^[19], 如图5(a).其中金纳米球直径1.9 nm,合理地采 用正负电荷平均分布的凝胶模型^[20].在初始时 刻,水分子距离纳米颗粒约3.7 Å,一个氢原子指 向纳米颗粒.激光场采用电场为z方向(即水分子 和金颗粒中心的连线方向)的高斯波包,如图5(c). 设纳米金球的中心处为z = 0.采用的激光频率 $h\omega = 2.62 \text{ eV},能够匹配纳米金球的主要光吸收峰.$

图 5 (a) 金纳米球 (直径 1.9 nm) 在沿 z 极化方向的激光场中, 等离激元诱导水分解的示意图; (b) 费米能级处的电荷密度 随时间的演化, 灰点和虚线分别标记纳米颗粒的中心和表面; (c) 外加激光场和 (d) 水的构成原子在 z 方向与金表面的距离 随时间的演化

Fig. 5. (a) The schematic showing plasmon-induced water splitting on Au nanosphere (D = 1.9 nm) under the laser field polarized in the z direction; (b) snapshots of the simulated time evolution of charge density at the Fermi level, where the grey dot denotes the center of the NP, and the dashed line indicates the NP surface; (c) time evolution of the applied field and (d) atomic distance d of water along the z direction to the Au surface.

此频率和实验上埋在铝中平均粒径为1.9 nm的 金纳米颗粒具有2.60 eV的吸收峰相符合^[7].水 在金纳米球上对激光场的响应过程如图5(d)中 所描述^[19].在模拟的30 fs内,氧原子几乎静止不 动,而指向金的氢原子以约10 fs的周期振动.另 一氢原子的高度则在振动10 fs后逐渐从3.7 Å升 高到33 fs的6.4 Å,对应的OH距离从1.12 Å升至 2.84 Å,意味着水在30 fs内分解为H和OH.作为 对照,无金纳米球的情况下,激光场只能使水中两 个OH 间持续振动而无分解现象发生.若激光强度 低于临界值,亦无水分解.

为研究光激发过程的本质,我们给出了系统在 费米能级处电荷密度随时间的演化,如图5(b).在 0fs,水分子上几乎没有电荷分布,3.3fs后一小部 分电荷自金纳米球逐渐转移到水分子,表明金纳米 球和水分子轨道开始杂化混合.至此,我们直接证 明了金纳米颗粒上的光解水由光激发导致.具体来 说,光激发金纳米颗粒诱导等离激元,随后等离激 元衰减产生热电子,能量匹配的热电子注入水的反 键轨道促使水分解.

为研究金纳米颗粒光解水产生氢气的动力学,

我们升级计算模型,以可合成、高稳定性、正四面体结构的Au₂₀纳米颗粒^[11,21]环绕吸附52个水分子来模拟液态水环境.初始构型由300 K下分子动力学模拟得到.外加激光场频率为2.81 eV,可匹配此体系在见光范围内的吸收峰.水分解需要光强高于阈值,且在0.24 J/cm²的模拟光强范围内分解速率几乎与光强成线性关系,说明水分解是单光子过程.水分解速率对光频的依赖与体系光吸收谱大致符合,说明水分解由Au₈等离激元主导,与之前的实验符合^[22-24].

激光场诱导等离激元极化场,由于表面上有电荷富集,金团簇附近局域电场大大增强.其在与外电场同向尖角处最大,可高达外电场的7.0倍.此 尖角附近吸附的水分子在电场的强烈震荡下可放 出一个H.对于所在吸附位置电场震荡稍逊的水分 子,若自金颗粒到水分子的反键轨道上有热电子转 入,亦可以分解.在不同强度的激光场下,我们都 观察到了氢气的合成^[25],如图6(a)所示.峰值光 场强度 *E*_{max} = 2.90 V/Å的情况下,有3个氢分子 生成.

图 6 (a) 在不同强度的激光照射下, 产生氢气分子个数的时间演化; (b) 金团簇等离激元诱导的水分解产生氢气的"链式反应"示意图; (c) 在 *t* = 0, 20, 26, 33 fs 时体系的原子组态

Fig. 6. (a) Time evolution of the number of hydrogen molecules with varied laser intensity; (b) schematics of "chain-reactions" in plasmon-induced water photosplitting and H₂ generation; (c) atomic configurations at time t = 0, 20, 26, and 33 fs.

氢气合成的过程如图6 (c) 所示.两个吸附的 水分子以O1—H1:O2形成氢键, d_{O2} —H1 = 1.72 Å. 20 fs 时, d_{O2} —H1 减小至 1.55 Å, O1—H1 距离增至 2.45 Å断裂放出 H1; 同时 H1 靠近 H4, d_{H1} —H4 = 1.89 Å; H4 离开 O2, d_{O2} —H4 = 1.51 Å. 26 fs 时, d_{O2} —H4 增至 1.91 Å, O2—H4 键断裂. 33 fs 时, d_{H1} —H4 降至 0.86 Å, 形成氢分子.以上制氢过程可 以用"链式反应"机理描述, 如图6 (b) 所示:

1) Au₂₀ 等离激元衰减产生的热电子高速碰撞 水分子,活化OH键,使H从水分子中分离;

2) 活化的H在电场作用下获得强大的动能,其 动能约为300 K下热动能的10倍;

3) 在热电子协助下另一个水分子上的H受到 前一个H的猛烈撞击而分解,产生两个H,一起合 成氢分子.

5 结束语

太阳能制氢电池的前景美好,但现今面临着 巨大挑战,如成本高、效率和稳定性低.为了在原 子尺度上理解光解水制氢的机理,我们着眼于太 阳能制氢电池中原子尺度上水的吸附和分解的电 子动力学过程,进行了一系列的第一性原理模拟 探索. 我们发现金纳米颗粒上的水吸附具有强烈 的轨道选择性,倾向于波腹而非波节处.我们还 模拟得到了水分解的步骤, 计算了反应势垒, 且 用NEB方法给出了反应路径,讨论了O-H的扩散 和氢气形成的可行性. 发现源于两个水分子的氢 原子易于靠近、结合产生氢分子.进一步以基于 含时密度泛函的激发态分子动力学方法研究金纳 米颗粒催化下光解水的量子动力学,得到了一些 原子尺度上的超快信息. 首先, 等离激元的量子 振动模式影响水的分解速率,能量匹配的净余热 电子会注入水的反键态,促使水分解.然后,金 团簇水吸附位点处场增强主导水分解, 电荷转移 也起重要作用. 最终, 我们提出等离激元诱导水 分解产生氢气的"链式反应"机理:等离激元衰减 产生的热电子注入水反键轨道, 使一个氢原子在 电场作用下逃逸; 它以可观的动量撞击另一水分 子, 使之也放出一个氢原子; 两个氢原子结合为氢 分子,一起远离金纳米颗粒的表面.我们希望以 上对光解水的微观超快机理的研究能帮助优化光 化学水分解电池的设计,比如调整纳米颗粒尺寸 及形状以符合太阳光频率分布,使得表面激发电 子与水反键态能量匹配,形成合适的水吸附位点等.

感谢与中国科学院物理研究所表面实验室的博士生游 佩桅、关梦雪、徐纪玉和张一民的有益讨论.

参考文献

- Linic S, Christopher P, Ingram D B 2011 Nat. Publ. Gr. 10 911
- [2] Mukherjee S, Zhou L, Goodman A M, Large N, Ayala-Orozco C, Zhang Y, Nordlander P, Halas N J 2013 J. Am. Chem. Soc. 136 64
- [3] Kudo A, Miseki Y 2009 Chem. Soc. Rev. 38 253
- [4] Li X, Xiao D, Zhang Z 2013 New J. Phys. **15** 23011
- [5] Ager J W, Shaner M R, Walczak K A, Sharp I D, Ardo S 2015 Energy Environ. Sci. 8 2811
- [6] Robatjazi H, Bahauddin S M, Doiron C, Thomann I 2015 Nano Lett. 15 6155
- [7] Cottancin E, Celep G, Lermé J, Pellarin M, Huntzinger J R, Vialle J L, Broyer M 2006 Theor. Chem. Acc. 116 514
- [8] Murray W A, Barnes W L 2007 Adv. Mater. 19 3771
- [9] Awate S V, Deshpande S S, Rakesh K, Dhanasekaran P, Gupta N M 2011 Phys. Chem. Chem. Phys. 13 11329
- [10] Liu Z, Hou W, Pavaskar P, Aykol M, Cronin S B 2011 Nano Lett. 11 1111
- [11]~ Li J, Li X, Zhai H J, Wang L S 2003 $Science~\mathbf{299}$ 864
- [12] Lin X, Nilius N, Freund H J, Walter M, Frondelius P, Honkala K, Hakkinen H 2009 *Phys. Rev. Lett.* **102** 206801
- [13] Ding Z, Gao S, Meng S 2015 New J. Phys. 17 13023
- [14] Meng S, Wang E G, Gao S 2004 Phys. Rev. B 69 195404
- [15] Ding Z, Yan L, Li Z, Ma W, Lu G, Meng S 2017 Phys. Rev. Mater. 1 45404
- [16] Shin H J, Jung J, Motobayashi K, Yanagisawa S, Morikawa Y, Kim Y, Kawai M 2010 Nat. Mater. 9 442
- [17] Jung J, Shin H J, Kim Y, Kawai M 2010 *Phys. Rev. B* 82 85413
- [18] Hu X L, Klimeš J, Michaelides A 2010 Phys. Chem. Chem. Phys. 12 3953
- [19] Yan L, Wang F, Meng S 2016 ACS Nano 10 5452
- [20] Zheng J, Zhang C, Dickson R M 2004 Phys. Rev. Lett.
 93 77402
- [21] Zhao L, Jensen L, Schatz G C 2006 J. Am. Chem. Soc. 128 2911
- [22] Christopher P, Xin H, Marimuthu A, Linic S 2012 Nat. Mater. 11 1044
- [23] Shi Y, Wang J, Wang C, Zhai T T, Bao W J, Xu J J, Xia X H, Chen H Y 2015 J. Am. Chem. Soc. 137 7365
- [24] Ingram D B, Linic S 2011 J. Am. Chem. Soc. 133 5202
- [25] Yan L, Xu J, Wang F, Meng S 2017 J. Phys. Chem. Lett. 9 63

SPECIAL TOPIC — Critical topics in water research

Water photosplitting: Atomistic mechanism and quantum dynamics^{*}

Shen Yu-Tian¹⁾ Meng Sheng^{1)2)†}

 (Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China)

2) (Collaborative Innovation Center of Quantum Matter, Beijing 100190, China)

(Received 6 July 2018; revised manuscript received 30 September 2018)

Abstract

Directly splitting water into carbon-free H₂ fuel and O₂ gases by sunlight is one of the most environmentally-friendly and potentially low cost approaches to solving the grand global energy challenge. Recent progress of electronic structure theory and quantum simulations allow us to directly explore the atomistic mechanism and ultrafast dynamics of water photosplitting on plasmonic nanoparticles. Here in this paper, we briefly introduce the relevant researches in our group. First we propose that the supported gold nanoparticles on oxide thin film/mental should be able to potentially serve as efficient photocatalysts for water splitting. Then, under the light illumination, we identify a strong correlation among light intensity, hot electron transfer rate, and water splitting reaction rate. The rate of water splitting is dependent not only on respective optical absorption strength, but also on the quantum oscillation mode of plasmonic excitation, which can help to design nanoparticles in water photosplitting cells. Finally, we simulate the ultrafast electron-nuclear quantum dynamics of H₂ generation with plasmonic gold cluster on a time scale of ~100 fs in liquid water. We identify that the water splitting is dominated by field enhancement effect and associated with charge transfer from gold to antibonding orbital of water molecule. Based on all atomistic mechanism and quantum dynamics above, we present a "chain-reaction" H₂ production mechanism via high-speed (much higher than their thermal velocity) collision of two hydrogen atoms from different water molecules under light illumination.

Keywords: water photosplitting, gold nanoparticles, quantum selectivity, quantum dynamicsPACS: 82.65.+r, 78.67.Bf, 68.43.Bc, 42.50.CtDOI: 10.7498/aps.68.20181312

^{*} Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant Nos. 2016YFA0300902, 2015CB921001), the National Natural Science Foundation of China (Grant Nos. 11474328, 11290164, 11774396), and the "Strategic Priority Research Program B" of the Chinese Academy of Science (Grant No. XDB070301).

 $[\]dagger$ Corresponding author. E-mail: smeng@iphy.ac.cn

ACTA PHYSICA SINICA Vol. 68, No. 1, January 2019

CONTENTS

INVITED REVIEW

017101 Excitonic magnetic polarons and their luminescence in II-VI diluted magnetic semiconductor micro-nanostructures Zou Shuang-Yang Muhammad Arshad Kamran Yang Gao-Ling Liu Rui-Bin Shi Li-Jie Zhang Yong-You Jia Bao-Hua Zhong Hai-Zheng Zou Bing-Suo SPECIAL TOPIC — Critical topics in water research 018202 Water photosplitting: Atomistic mechanism and quantum dynamics Shen Yu-Tian Meng Sheng 016803 Interfacial water and catalysis Hu Jun Gao Yi 015101 Definition and quantification of hydration water in aqueous solutions Wang Qiang Cao Ze-Xian 018801 Water and mass transport in low-dimensional confined structures Zhang Xi-Qi Wen Li-Ping Jiang Lei 013101 Research progress of molecular structure and dynamics of biological water Ye Shu-Ji Li Chuan-Zhao Zhang Jia-Hui Tan Jun-Jun Luo Yi 019201 Mechanism of soil environmental regulation by aerated drip irrigation Yang Hai-Jun Wu Feng Fang Hai-Ping Hu Jun Hou Zheng-Chi 018203 Structure and properties of nature clathrate and its application in energy and enviromental science Zhu Jin-Long Zhao Yu-Sheng Jin Chang-Qing 016802 Recent advances in probing surface/interfacial water by scanning probe microscopy You Si-Fan Sun Lu-Ye Guo Jing Qiu Xiao-Hui Jiang Ying REVIEW 018101 Recent progress of solidification of suspensions You Jia-Xue Wang Jin-Cheng Wang Li-Lin Wang Zhi-Jun Li Jun-Jie Lin Xin

GENERAL

010301 Geometric momentum distribution for three-dimensional isotropic hormonic oscillator

Liu Quan-Hui Zhang Meng-Nan Xiao Shi-Fa Xun Da-Mao

010501 Chaotic motion of piezoelectric material hyperbolic shell under thermoelastic coupling

Li Lin-Li Xue Chun-Xia

(Continued)

ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS

014301 Characteristics of convergence zone formed by bottom reflection in deep water Zhang Peng Li Zheng-Lin Wu Li-Xin Zhang Ren-He Qin Ji-Xing

PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES

015201 Photon spectrum and angle distribution for photon scattering with relativistic Maxwellian electrons Li Shu

CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES

016101 Correlation between electrical resistivity and strength of copper alloy and material classification

Li Hong-Ming Dong Chuang Wang Qing Li Xiao-Na Zhao Ya-Jun Zhou Da-Yu

016801 Influence of stiffness gradient on friction between graphene layers Dong Yun Duan Zao-Qi Tao Yi Gueye Birahima Zhang Yan Chen Yun-Fei

CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES

- 017201 Dynamics of A-exciton and spin relaxation in WS₂ and WSe₂ monolayer Yu Yang Zhang Wen-Jie Zhao Wan-Ying Lin Xian Jin Zuan-Ming Liu Wei-Min Ma Guo-Hong
- 017202 White organic light emitting devices based on ultrathin emitting layer and bipolar hybrid interlayer

Yu Hao-Jian Yao Fang-Nan Dai Xu-Dong Cao Jin Chulgyu Jhun

- 017301 Effects of AlGaN interlayer on scattering mechanisms in InAlN/AlGaN/GaN heterostructures Chen Qian Li Qun Yang Ying
- 017401 Electronic and optical properties of n-pr co-doped anatase TiO₂ from first-principles Zhang Li-Li Xia Tong Liu Gui-An Lei Bo-Cheng Zhao Xu-Cai Wang Shao-Xia Huang Yi-Neng
- 017402 Point-contact Andreev reflection spectroscopy on Re₃W superconductor Wang Zong Hou Xing-Yuan Pan Bo-Jin Gu Ya-Dong Zhang Meng-Di Zhang Fan Chen Gen-Fu Ren Zhi-An Shan Lei
- 017501 Modeling of stress-regulated AND (OR) logic gate based on flipping preference of tilted nanomagnet

Liu Jia-Hao Yang Xiao-Kuo Wei Bo Li Cheng Zhang Ming-Liang Li Chuang Dong Dan-Na

017801 **Refractive index and thermo-optic coefficient of Ge-Sb-Se chalcogenide glass** Yang An-Ping Wang Yu-Wei Zhang Shao-Wei Li Xing-Long Yang Zhi-Jie Li Yao-Cheng Yang Zhi-Yong

(Continued)

017802 Fabrication and photovoltaic performance of counter electrode of 3D porous carbon composite

Chen Zhuo Fang Lei Chen Yuan-Fu

017803 Research on fluorescence lifetime dynamics of quantum dot by single photons modulation spectrum

Zhang Qiang-Qiang Hu Jian-Yong Jing Ming-Yong Li Bin Qin Cheng-Bing Li Yao Xiao Lian-Tuan Jia Suo-Tang

INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY

018201 Mechanism of influence of separator microstructure on performance of lithium-ion battery based on electrochemical-thermal coupling model

Zeng Jian-Bang Guo Xue-Ying Liu Li-Chao Shen Zu-Ying Shan Feng-Wu Luo Yu-Feng

018401 Photoinduced charge carrier dynamics and spectral band filling in organometal halide perovskites

Zhao Wan-Ying Ku Zhi-Liang Jin Zuan-Ming Liu Wei-Min Lin Xian Dai Ye Yan Xiao-Na Ma Guo-Hong Yao Jian-Quan

- 018501 Mathematical model of memristor with sensory memory Shao Nan Zhang Sheng-Bing Shao Shu-Yuan
- 018901 Network heterogeneity based on K-order structure entropy Huang Li-Ya Huo You-Liang Wang Qing Cheng Xie-Feng

Color figures can be viewed in the online issue.

Online issue

专题:水科学重大关切问题研究 [中国科学院物理研究所曹则贤供图]

公 告

为实现录用稿件的提前在线全文出版,我刊采用单篇论文给定编码的目录方案,编码的设定规则是: 期号 + 文章第一个 PACS 代码的前两位数字 + 序号(按同一类代码文章录用时间的先后排序).

《物理学报》已加入"中国知网"优先数字出版,录用文章将先于印刷版期刊在中国知网 www.cnki.net 在线优先发布,如果作者不愿优先出版可在版权协议里补充说明,如无补充说明,编辑部将视为同意授权.

《物理学报》编辑部

物理学报 (WULI XUEBAO)

(半月刊, 1933年创刊) 2019年1月 第68卷 第1期

版权所有

编辑出	出版	《物理学报》编辑部			
		(北京 603 信箱 邮政编码 100190)			
主	编	欧阳钟灿			
主	管	中 国 科 学 院			
主	办	中国物理学会			
		中国科学院物理研究所			
		(北京 603 信箱 邮政编码 100190)			
印刷装	专订	北京科信印刷有限公司			
总发行		北京报刊发行局			
订 购	处	全国各邮电局			
国外总发	行处	中国国际图书贸易总公司			
		(北京 399 信箱 邮政编码 100044)			
广告发布登记文号 京海工商广登字 20170113号					

ISSN 1000-3290 国内邮发代号: 2-425

ACTA PHYSICA SINICA

(Semimonthly, First Published in 1933)

Vol. 68 No. 1 January 2019 © 2019 Chinese Physical Society

Edited by the Editorial Office of ACTA PHYSICA SINICA Editor-in-Chief: Ouyang Zhong-Can Published by Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences Distributed by China International Book Trading Corporation P.O. Box 399, Beijing 100044, China Editorial Office: P.O. Box 603, Beijing 100190, China E-mail: apsoffice@iphy.ac.cn http://wulixb.iphy.ac.cn

国内统一刊号: CN11-1958/O4 国外发行代号: M52 定价: 120 元

公开发行