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Ultrafast electronic dynamics in solids lies at the core of modern condensed matter and materi-
als physics. To build up a practical ab initio method for studying solids under photoexcitation,
we develop a momentum-resolved real-time time dependent density functional theory (rt-TDDFT)
algorithm using numerical atomic basis, together with the implementation of both the length and
vector gauge of the electromagnetic field. When applied to simulate elementary excitations in
two-dimensional materials such as graphene, different excitation modes, only distinguishable in
momentum space, are observed. The momentum-resolved rt-TDDFT is important and computation-
ally efficient for the study of ultrafast dynamics in extended systems. Published by AIP Publishing.
https://doi.org/10.1063/1.5036543

I. INTRODUCTION

Real-time (rt) time dependent density functional theory
(TDDFT) is an efficient ab initio method to study elec-
tron dynamics in complex electron-nuclear systems in both
the ground state and excited state. Compared with other
widely used approaches such as frequency domain TDDFT,
quasi-particle GW, and Bethe-Salpeter equations, rt-TDDFT
has two major advantages: (i) Time-dependent Kohn-Sham
(TDKS) equations in rt-TDDFT include all nonlinear effects
and are intrinsically non-perturbative, making rt-TDDFT a
better tool to describe materials in a strong field and (ii)
rt-TDDFT directly provides complete information on real
time evolution of electronic wavefunctions together with ionic
movements, presenting a unique way for real-time tracking
ultrafast dynamics and complex phenomena far from equi-
librium. Thus, rt-TDDFT is a natural choice for the explo-
ration of strong field physics and ultrafast phenomena. Moti-
vated by the rapid developments in ultrafast experimental
techniques, e.g., attosecond based spectroscopy,1 ultrastrong
laser sources,2 and free electron X-ray lasers,3 rt-TDDFT
is drawing more and more attention as a method to sim-
ulate ultrafast phenomena in the current line of research
frontiers.

Nevertheless, rt-TDDFT is not widely used as the method
of choice in the literature, being much less popular than other
density functional theory (DFT) based approaches such as
∆SCF, DFT+U, frequency-domain TDDFT, etc. The major
reasons responsible for this fact are perhaps the limited func-
tionality and heavy computational cost in most rt-TDDFT
approaches. Thus, numerical atomic orbitals (NAO) have been
a common choice to dramatically reduce computation cost for
simulating complex materials and have been widely used in

a)Electronic mail: smeng@iphy.ac.cn

DFT codes such as SIESTA4,5 and OpenMX6 and rt-TDDFT
implementations by Tsolakidis7 and Li.8,9 The biggest advan-
tage of using NAO is the extremely small computational cost.
To describe a system with Na atoms, only about 10 × Na

NAOs are required, while 103–104 × Na real space grids or
plane waves have to be invoked. In addition, with a rela-
tively small real-space cutoff for NAOs, the order-N linear
scaling with respect to system size can be achieved. Since a
major difficulty in developing rt-TDDFT is its extreme time
consumption due to the use of ultrasmall time step (on the
order of ∼1 attosecond), NAO based k-resolved rt-TDDFT is
very promising for simulating realistic condensed matter sys-
tems, complex materials, and interfaces with a long simulation
time.

Most previous rt-TDDFT investigations focus on the
photoabsorption and related properties of finite-size zero-
dimensional (0D) systems (atoms/molecules/nanoparticles)
including optical spectra,10–30 excited state dynamics,31–33

solvation effect,34–38 relativistic effect variationally,39,40 pho-
tochemical stability,41–45 and recently plasmonic excita-
tions.46–58 In 0D systems, only single Γ point is needed in
the reciprocal space sampling. Thus, the Γ-only algorithm
is overwhelming, as commonly implemented and used in
the majority of rt-TDDFT simulations. However, to study
photoexcitation and electronic dynamics in extended sys-
tems, Γ-only k-point sampling is insufficient and momentum-
resolved (k-resolved) sampling in the reciprocal space is
required.

An important advantage of using k-resolved rt-TDDFT
is computational efficiency. With Γ-only TDDFT, to get the
accurate charge density and ionic forces, an extraordinary
large supercell has to be invoked. Many previous studies on
extended systems belong to this scenario,59–67 including our
recent studies on ultrafast electron-hole dynamics in dye-
sensitized solar cells,68–73 charge separation in van der Waals

0021-9606/2018/149(15)/154104/12/$30.00 149, 154104-1 Published by AIP Publishing.

https://doi.org/10.1063/1.5036543
https://doi.org/10.1063/1.5036543
https://doi.org/10.1063/1.5036543
mailto:smeng@iphy.ac.cn
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5036543&domain=pdf&date_stamp=2018-10-15


154104-2 Lian et al. J. Chem. Phys. 149, 154104 (2018)

heterojunctions,74 and nonthermal melting of silicon.75 Using
k-resolved algorithms, and at the same accuracy level, the
supercell size as well as the computational cost can be largely
reduced, as will be demonstrated later.

Besides technical advantages, the k-resolved algorithm
introduces the important k-space resolution and a new degree
of freedom, which is essential to describe key quantities and
important physics in condensed matter materials such as time-
dependent band structures, quasiparticles, and valley dynam-
ics. Only rt-TDDFT with k-resolved sampling can provide
essential information concerning the real time evolution of
material properties.

Although k-resolved rt-TDDFT algorithms have been
implemented by several groups76–79 and applied for both
semiconductors80–88 and metals,89–92 these implementations
employ either real space grids or planewaves as basis sets. With
a much smaller basis set, the implementation of k-resolved
rt-TDDFT algorithms with NAO basis has advantages in effi-
ciency. To take the advantages of NAOs, a new framework
and a more complicated implementation of rt-TDDFT are
required.

In this work, we strive to tackle the major challenges
mentioned above in NAO-based rt-TDDFT. We have success-
fully developed the k-resolved rt-TDDFT algorithm based
on local atomic basis sets using numerical atomic orbitals.
Both the length and vector gauge of the electromagnetic
field have been implemented. This approach enables rt-
TDDFT calculations of solids and surfaces using rather
simple unit cells, reducing computational cost by several
orders of magnitudes. Moreover, momentum-resolved elec-
tron dynamics in the excited states can be tackled by
this approach. For instance, k selective photoexcitations in
graphene are demonstrated here, where three distinct photoex-
citation modes located at different k points in the recipro-
cal space are induced upon laser illumination. This kind of
k-dependent electronic dynamics is ubiquitous in extended
systems such as periodic solids and interfaces. Therefore,
we expect highly efficient k-resolved rt-TDDFT algorithms
employing local bases be an important development and will
be widely used in first-principles simulations of ultrafast phe-
nomena under a strong field and optimal control of quantum
materials.

II. METHODOLOGY

The main framework of the k-resolved rt-TDDFT algo-
rithm is inherited from an earlier single-Γ version of the Time
Dependent ab initio Package (TDAP),93 which is based on
the SIESTA4,5 package. In such a rt-TDDFT algorithm, the
flowchart of a given ionic step is shown in Fig. 1. Each process
is described in detail in Secs. II A–II G, marked with the same
labels as in Fig. 1. Here atomic units ~ = me = e = 1 are used
throughout this work.

A. Hamiltonian and overlap matrix

Adopting periodical boundary conditions, the lattice of
an extended system is denoted as Rs (s = 1, 2, 3, . . ., N)
and the atoms i in the unit cell are located at positions bi,

FIG. 1. Flowchart of the k-resolved rt-TDDFT algorithm. Here Sk is the
overlap matrix, Hk is the Hamiltonian matrix, and |unk〉 is the periodic part
of TDKS orbitals at momentum k.

where N is truncated to construct a finite supercell. A set of
numerical atomic-centered orbitals (NAOs) {ξ iα} is associ-
ated with each atom in the simulated system, where α denotes
both the orbital and angular quantum number of an atomic
orbital, each expressed in multiple radial basis functions ζ .4

Here, since all the operators and functions are time-dependent,
we only denote the explicit dependence on t as f (t) and omit t
for implicit dependence.

Overlap matrix Sk and Hamiltonian Hk at each k point in
the reciprocal space are expressed with NAOs,

Siα,jβ,k =
∑

s

e−ik ·Rs〈ξiα(r + Rs + bi)|ξjβ(r + bj)〉, (1)

Hiα,jβ,k =
∑

s

e−ik ·Rs〈ξiα(r + Rs + bi)|Ĥ |ξjβ(r + bj)〉, (2)

where

Ĥ = T̂ +
∑

V local
I (r) +

∑
VKB

I + VH (r, ρ(r))

+ VXC(r, ρ(r)) + V ext(r) (3)

is the Hamiltonian operator. Here T̂ = 1
2∇

2
r is the kinetic

energy operator, I is the index for atoms, V local
I and VKB

I are
the local and Kleinman-Bylander parts of the pseudopoten-
tial for the Ith atom, VH is the Hartree potential, VXC is the
exchange-correlation (XC) potential, and V ext is the potential
of the external field. Details in the calculation of 〈ξ iα(r + Rs

+ bi)|Ĥ |ξ jβ(r + bj)〉 are described in Ref. 5. Within adiabatic
local density approximation (ALDA) and generalized gradient
approximations (GGA)94 for the exchange-correlation func-
tional, VXC does not depend explicitly on time t, i.e., VXC[ρ(r,
t), t] = VXC[ρ(r, t)]. Thus, most XC functionals in ground-state
DFT such as Perdew-Wang,95 Perdew-Burke-Ernzerhof,96

Becke-Lee-Yang-Parr,97,98 and van der Waals density func-
tional99,100 are compatible in this implementation of
rt-TDDFT.
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B. External field

To simulate the laser-matter interactions, time-dependent
electric field E(t) is introduced to the Hamiltonian to repre-
sent the external time-dependent laser field in two different
scenarios: the length gauge and vector gauge.

Within the length gauge, the effect of the electric field E(t)
is added to V ext as a scalar potential

V ext(r, t) = −E(t) · r. (4)

Time dependent E(t) can be tuned adopting any shape in time
evolution. A most popular example is using the shape of a
Gaussian wave packet

E(t) = E0 cos(2πft + φ) exp

[
−

(t − t0)2

2σ2

]
, (5)

where f is the laser frequency, t0 is the peak time, and φ is the
phase factor.

We note that the translational symmetry of Hamiltonian
is broken by the introduction of finite external field E in the
length gauge since

V ext(r + Rs, t) = −E(t) · (r + Rs) , −E(t) · r. (6)

Thus, a common solution is using a sawtooth field along spatial
direction µ ∈{x, y, z}

Eµ(r, t) =

{
Eµ(t), ε < xµ < Lµ − ε ,
−Eµ(t)Lµ/2ε , −ε < xµ < +ε ,

(7)

where Lµ is the length of the unit cell along µ and ε → 0.
Thus, −Eµ(t)Lµ/2ε → ∞, which requires that charge den-
sity vanishes ρ(xµ) = 0 in the region −ε < xµ < +ε , oth-
erwise the energy diverges. Thus, a vacuum layer is essen-
tial along µ. The requirement for a vacuum layer limits the
application of theoretical approaches using the length gauge
field to study the extended systems. Since there is no vac-
uum layer in the extended bulk systems, the translational
symmetry of the Hamiltonian is broken, H(r + Rs) , H(r),
using the length gauge field. Plus, the length gauge
field is invalid in large systems and in short wavelength
perturbation.101

The dynamic electric field in the vector gauge by introduc-
ing vector potential A could preserve the transitional symmetry
of Hamiltonian, thus removing the requirement of the vacuum
layer.83,102 The relation between E and A is

E = −
1
c
∂A
∂t

; A = −c
∫

Edt. (8)

The Hamiltonian with the presence of A is then

H =
1

2m
(~k −

e
c

A)2 =
1

2m
(~k + e

∫
Edt)2 =

~2

2m
(k + kA)2,

(9)
where

kA =
e
~

∫
Edt =

√
2
∫

Edt, (10)

within the Rydberg atomic unit, where e =
√

2, ~ = 1, and
t = ~/Ry. The unit of kA is bohr−1, the same as the unit
of k.

C. Propagation

With the time-dependent (TD) Hamiltonian and overlap
matrix, the TDKS equation is solved to obtain |unk(r, t + ∆t)〉
from the state |unk(r, t)〉 at the previous time step,

|unk(r, t2)〉 = exp
[
−iS−1

k (t ′)Hk(t ′)∆t
]
|unk(r, t1)〉, (11)

where ∆t = t2 − t1 is the length of time step, |unk(r, t)〉 is the
Bloch function and t ′ ≈ (t1 + t2)/2.

It is rather difficult to evaluate Hk(t ′) and Sk(t ′) directly.
Because ∆t is quite small (<0.05 fs), the ion positions
barely change from t1 to t2. Since Sk(t) is only deter-
mined by ionic positions [Eq. (1)], it is accurate enough to
assume Sk(t ′) ≈ Sk(t2). However, Hk(t) may largely change
due to the rapid evolution of electrons. To approximate
Hk(t ′) properly, the mid-point technique has been widely
used.8,103

Note that |unk(r)(t2)〉 is not explicitly dependent on other
TDKS orbitals |un′k′(r)(t1)〉 (n′ , n or k′ , k), as a result of
the v-representativity of the TDKS equations.104,105 It decou-
ples the evolution equations of different TDKS orbitals and
makes TDDFT calculations practical. However, it neverthe-
less can account for both interband and intraband scatter-
ings. Because Hk is determined by the total charge density,
which is a weighted summation of all the occupied orbitals,
there still exists an implicit coupling between different TDKS
orbitals.

Numerically, the time propagator exp(−iS−1
k Hk∆t) in

Eq. (11) is expanded using the first-order Crank-Nicholson
scheme,

|unk(r, t2)〉 =
1 − iS−1

k Hk∆t/2

1 + iS−1
k Hk∆t/2

|unk(r, t1)〉. (12)

Technically, since computing S−1
k is the most time-consuming

part in the calculation of Eq. (12), we minimize the times for
its computing. S−1

k is only updated when atomic positions, thus
the center of NAOs, bi are changed. Consequently, when ions
are fixed, S−1

k is computed only once at the first ionic step.
Even with ions moving, S−1

k only need to be updated once for
each ionic step.

D. Updating charge density

With |unk(r, t2)〉 solved in Eq. (11), the density matrix
(DM) ρiα ,jβ(t2) is computed accordingly as

ρiα,jβ(t2) =
∑

n

∑
k

qn,k |unk(r, t2)〉 〈unk(r, t2)|

=
∑

n

∑
k

qn,kc∗n,iα,k(t2)cn,jβ,k(t2), (13)

where qn,k is the electronic population of the band n at
k and cn,jβ ,k(t2) is the coefficient of |unk(r, t2)〉 in NAO
basis,

|unk(r, t2)〉 =
∑
jβ

cn,jβ,k(t2)ξjβ(r). (14)

E. Self-consistent evolution

We use the self-consistent process described in Ref. 93
during the time evolution of charge density. This process sub-
stantially increases the numerical stability.106 All the criteria
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for the convergence test developed in SIESTA are compati-
ble with the current approach, such as using the maximum
element of the DM difference, the energy difference, the
Harris energy difference, etc., as a criterion for achieving
self-consistency.4

Here, we use DM difference as an example. Conver-
gence in charge density during time evolution is reached
when

max
{���ρ

new
iα,jβ − ρiα,jβ

���
}
< η, (15)

where η is about 10−4.

F. Mixing

If not converged, the linear mixing of DM is needed to
generate the input DM for computing charge density ρnext at
the next cycle, instead of using ρnew directly,

ρ = (1 − w)ρ + wρnew , (16)

where the ρ on the right side of Eq. (16) is the input DM and
ρnew is the output DM and w is the mixing weight, usually w
= 0.1–0.5.

G. Postprocessing

If self-consistent time evolution of charge density is
converged, the postprocessing steps are evoked, including
the calculation of total energy, Hellmann-Feynman forces,
ionic movements, etc. These functions are implemented in
SIESTA4 and compatibly used in TDAP.93 We note that
rt-TDDFT in atomic orbital basis gives rise to additional
Pulay terms that contribute to the force evaluations.107–109

The total force is the combination of Hellmann-Feynman
force and Pulay term. With the calculated forces, the cou-
pled electron-ion motion can be simulated based on classical
ionic trajectories, in the framework of Ehrenfest dynamics.
In Ehrenfest dynamics, the forces on the ions are averaged
over the adiabatic electronic states along all possible ionic
paths. If one path is dominating or many similar poten-
tial energy surfaces are involved, Ehrenfest dynamics works
very well;110 otherwise, classical trajectory approximations
in Ehrenfest dynamics become less accurate.111,112 Further-
more, detailed balance for quantum electronic states is absent
in the Ehrenfest dynamics. Thus, the applications of the present
method are limited to the cases where the averaged poten-
tial energy surfaces yield a reasonable description of cou-
pled electron-ion dynamics. Since we focus on the dynamics
of excited electrons in this work, the ions are fixed in the
simulations.

Here we introduce some analysis in detail for typical rt-
TDDFT simulations. First, we could evaluate the state-to-state
transition probabilities between TDKS orbitals during time
evolution8,113

Pnn′k = |Cnn′k |
2 = |〈vnk |Sk |un′k〉|

2, (17)

where |vnk〉 is the adiabatic basis satisfying

Hk |vnk(r)〉 = EnkSk |vnk(r)〉. (18)

The population
∐

nk of the adiabatic state nk is thus projected
from the TDKS orbitals at a given time as

qnk =
∑

n′∈nk,occ

qn′kPnn′k, (19)

where nk ,occ is the occupied state at k point.
For finite systems and surface slabs, we can calculate time-

dependent dipole moment along the direction. For periodic
systems, the dipole moment is ill-defined. Instead, we calculate
time dependent current,

j = −i
e~
m

∑
n

(〈unk |∇|unk〉 − 〈unk |∇|unk〉
∗), (20)

as the response function.

III. RESULTS AND DISCUSSION
A. Momentum-resolved versus supercell approaches

To demonstrate the k-resolved algorithm, we choose
graphene as the model system [see Fig. 2(a)]. An exotic prop-
erty of graphene (also of other Dirac materials) is the linear
dispersion near K point, namely, E(k) = vFk, where E is the
band energy and vF is the Fermi velocity which could reach
106 m/s. To describe all the Bloch electrons, especially those
near the Fermi energy, two kinds of strategies are used: unit
cell calculations with k-resolved reciprocal space samplings
or a supercell approach with Γ-only k-sampling. To demon-
strate the advantages of the k-resolved algorithm, we compare
three cases:

(i) unit cell with the Monkhorst-Pack114 Nk × Nk × 1
k point mesh, to cover all important special k-points

FIG. 2. (a) Sketch of graphene under the out-of-plane polarized laser field.
(b) Brillouin zone and k sampling of graphene. Blue dots denote the k points
used for sampling. Red lines denote the high symmetric path.
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M, Γ, and K, facilitating a line-mode analysis along
M → Γ→ K → M [Fig. 2(b)];

(ii) Nc × Nc × 1 supercell with a single Γ point; and
(iii) Nc × Nc × 1 supercell with a single K point.

To compare the computation accuracy of these three cases,
we define an error function ∆ as

∆ =
1
T

∫ T

0
|Eex(t) − Eref

ex (t)|dt, (21)

where T is the total simulation time, Eref
ex is the excitation

energy of the reference case, and Eex(t) is the excitation
energy

Eex(t) = EKS(t) − EKS(t = 0), (22)

where EKS is the total energy of the system.
Here, we evaluate ∆ under such settings: the Gaussian-

shaped laser pulse [Eq. (5)] with φ = 0, t0 = 7.0 fs, σ = 2.0 fs,
f = 21.93 eV is applied; the total simulation time is T = 20 fs;
and the reference energy Eref

ex is calculated with a 60 × 60
× 1 k-point mesh. A diagram to illustrate the definition of
∆ is shown in the inset of Fig. 3. The time step is chosen
to be ∆t = 0.02 fs, and the total time is 20 fs. Troullier-
Martins pseudopotentials,115 adiabatic local density approx-
imation (ALDA) exchange-correlation functional,94,95 and an
auxiliary real-space grid equivalent to a plane-wave cutoff of
75 Ry are used. In description of C atoms, we use a basis set of
8 double-ζ orbitals {2s(2ζ), 2px(2ζ), 2py(2ζ), 2pz(2ζ)} and 5
polarization orbitals {Pdxy , Pdyz , Pd2

z
, Pdxz , Pd2

x−y2}. We calcu-
late the test cases with one 8-core Intel(R) Xeon(R) central
processing unit (CPU) E5-2650@2.00 GHz.

FIG. 3. Error function∆, as defined in Eq. (21), as a function of N with differ-
ent supercells and k mesh setups. N denotes Nk for the k-resolved approach
or Nc for the single K and single Γ supercell approach.

We plot ∆ of these three cases in Fig. 3. The error ∆
decreases as N = Nk (or Nc) increases. The absolute value
of ∆ on the same scale is achieved with Nc = Nk . That is to
say, the unit cell approach with the N × N × 1 k-point mesh
is as accurate as the approach using a N × N × 1 supercell.
To achieve an accuracy with the ∆ ≤ 2 meV/atom, Nk = 24 is
needed. Thus, it can be predicted that NC = 24 is needed for
the supercell approach.

However, we emphasize that the computational cost for
calculating the Nc × Nc × 1 supercell is extremely heavy. As
shown in Fig. 4, solving Eq. (11) dominates (∼80%) the com-
puter time consumption at large Nk (Nc), which scales linearly

FIG. 4. (a)–(c) CPU clock time as a function of Nk or Nc. H setup corresponds to the calculation in Eq. (3), Postprocesses mainly comprise calculating
Hellmann-Feynman forces, and Propagation corresponds to computation in Eq. (11). [(d)–(f)] Percentages of the computer time consumption for each process
with (d) Nk = 24 and [(e) and (f)] Nc = 9.
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with the total number of k points, N2
k , and quadratically with

the total number of atoms, N2
c . The CPU clock time tc approx-

imately scales as O(N2
k × N4

c ). Thus, tc = N4
c for supercell

calculation, while tc = N2
k for k-resolved calculations at the

same level of accuracy.
As N increases, this difference becomes more significant.

For supercell calculations, we are able to only compute super-
cells up to NC = 9, which already costs over 2 × 103 min.
At the same accuracy level, Nk = 9 calculation costs only
20 min, which is only 1/100 of that for the NC = 9 case,
consistent with the time complexity analysis N2

k /N
4
c = 1/81.

As mentioned above, Nk = 24 or NC = 24 is needed for
relatively accurate calculations. To fulfill this requirement, cal-
culation with Nk = 24 costs only about 1 h, showing that it
is readily accessible and efficient. By contrast, calculating a
Nc = 24 supercell would require a computer time over 576 h
(24 days) and thus heavy in real applications. Regarding the
computational accuracy and efficiency, we choose k-point
mesh 24 × 24 × 1 to achieve an extremely dense sampling
of the Brillouin zone.

With the small unit cell of graphene, the number of
real space grids is ∼1000, which is 30 times of the num-
ber of NAOs used. Considering the evolution algorithm has
the computational complexity of O(n2), where n is the num-
ber of basis functions, the computer time for wavefunction
evolution using NAO basis is largely reduced to 1/90 of that
using real space grid basis. In practical calculations using
the same number of message-passing-interface (MPI) pro-
cesses, the reduction in the total computer time is tested
to be about 1/5 to 1/10 depending on the systems under
consideration.93,116

B. Out-of-plane excitation

We then adopt a laser field perpendicularly polarized to
the graphene plane to excite electrons in graphene, i.e., in a
setup of small angle scattering. Since there is a vacuum layer
along the out-of-plane direction, the laser field in the length
gauge can be used.

We first calculate the dielectric function of graphene to
locate the photon energy for resonant excitation, αµ ,ν , where
µ, ν denote the spatial direction µ, ν ∈ {x, y, z}. The αµ ,ν

describes the response of dipole moment Pµ(ω) to the electric
field Eν(ω) in the frequency domain,

Pµ(ω) = αµ,ν(ω)Eν(ω). (23)

In rt-TDDFT calculations, we apply the electric field Eν(t)
and obtain the dipole moment Pµ(t) in time domain. Then we
carry out the Fourier transform to get Eq. (23),∫

Pµ(t) exp(iωt)dt = αµ,ν(ω)
∫

Eν(t) exp(iωt)dt. (24)

We then obtain

αµ,ν(ω) =
∫ Pµ(t) exp(iωt)dt

∫ Eν(t) exp(iωt)dt
. (25)

In principle, Eν(t) can be in an arbitrary shape with time.
However, in practice, it is better to choose the Dirac
function Eδ

ν (t)=Eν0δ(t) or the Heaviside step function

Eθν (t)=Eν0[1 − θ(t)] to include components Eν(ω) at all ω,
since we have

Eθν (ω) =
∫

Eν0[1 − θ(t)] exp(iωt)dt =
E0
ν

iω
. (26)

Here we choose the latter form,

Eθν (t) = E0
ν [1 − θ(t)] =

{
E0
ν t ≤ 0

0 t > 0
, (27)

which leads to

αµ,ν(ω) =
iω

E0
ν

∫
Pµ(t) exp(iωt)dt. (28)

Importantly, Im{αµ ,µ(ω)} characterizes the optical absorbance
at ω along the µ direction.

We calculate the imaginary part of the dielectric function
along the out-of-plane z direction of graphene, Im{αz ,z(ω)}.
As shown in Fig. 5, Im{αz ,z(ω)} are almost the same with
the increase of E0 from 0.05 to 0.5 V/Å, indicating that
the linear response theory is appropriate in this range of
light illumination. The absorption peaks are located at rel-
ative high energies (>20 eV). The first absorption peak is
located at 21.93 eV. We choose this photon energy to sim-
ulate the resonant excitation of graphene in the perpendicular
direction.

We demonstrate the excitation dynamics of graphene at a
resonant light frequency of ωr = 21.93 eV and compare to the
case at the non-resonant light frequency of ωnr = 2.0 eV. We
characterize the overall excitation through tracking the number
of excited electrons, as well as the total energy change during
the excitation process as a function of time. The number of
excited electrons n(t) is calculated as

n(t) =
∑

unocc

qnk(t), (29)

where
∐

nk(t) is obtained from Eq. (19) and unocc denotes the
unoccupied TDKS states.

As shown in Fig. 6, different behaviors are observed for
the two excitation conditions. The excited electrons n(t) and
excitation energy Eex(t) increase at ωr , while no response
is observed at ωnr . The same results are obtained at other

FIG. 5. The Im{αµ ,µ (ω)} as a function of photon energy ω at different E0
z

using Eq. (28).
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FIG. 6. (a) The number of excited electrons, (b) the total energy during exci-
tation, and (c) the profile of the laser field as a function of time. Red curves
are for the non-resonant case at the photon energyω

∐
nr = 2.0 eV, while blue

curves are for the resonant case at ωr = 21.93 eV.

non-resonant light frequencies of 1.0, 2.0, and 4.0 eV. It
verifies that the calculated Im{αz ,z(ω)} characterizes well
selectivity in optical absorption: only the light with the right
photon energy ω, at which Im{αz ,z(ω)} peaks, has a strong
absorption.

We discuss the resonant case here. In general, n(t) is simi-
lar to the shape of the laser pulse, while two special features are
observed. First, the time variation in n(t) has a 1.4 fs delay from
the laser field. This delay represents the intrinsic response time
of graphene to the laser field, namely, the time needed for light
absorption and electronic transitions. Second, n(t) decreases
but does not vanish after the end of light pulse. Thus, we pro-
pose that two kinds of excitation processes exist: one is the tran-
sient excited electrons, which quickly vanishes after the laser
pulse is off; another is the residual excited electrons, which
live relatively longer. Residual n(t) would decrease with the
occurrence of electron-electron and further electron-phonon
scatterings at the time scale of 100 fs, thus is not observed in our
short-time simulation (<20 fs). We note that the dependence on
history is absent in the calculations with adiabatic exchange-
correlation functionals, which causes less accurate prediction
of the lifetime of excited states and ionic forces on a long time
scale.117–121

To verify our assumption about the existence of two kinds
of excitation processes, we further distinguish the excitation
with k-point resolution. We choose six snapshots of

∐
nk(t)

defined in Eq. (19), as shown in Fig. 7. At t = 2.0 fs with the
absence of laser pulse, no excitation is observed at all k points.
At t = 4.0 fs, the excitation is still ignorable, while the laser
field is just turned on, due to the delay in electronic response
we discussed above. At the peak time of the laser pulse
t = 7.0 fs,

∐
nk(t) shows a significant distribution over many

k-points. We mark the dominant excitation mode as L, which
involves bonding π and antibonding π bands. When t increases

FIG. 7. Snapshots of excitation population ∆
∐

nk(t) at different time t. Black
curves denote the time-dependent band structure of graphene. Blue cycles
represent ∆

∐
nk(t) < 0, and red cycles represent ∆

∐
nk(t) > 0. The radius of

circles is proportional to the value of |∆
∐

nk(t)|.

from 7 fs to 12 fs, the L mode excitation rapidly decreases.
By contrast, two new modes (labeled by their locations in the
reciprocal space, K1 and K2) increase and become dominant.
K1 and K2 modes maintain within 20 fs, while L mode gradu-
ally vanishes. Thus, with the assistance of a newly developed
k-resolved algorithm, we are able to successfully distinguish
these two kinds of excitation processes: L mode produces the
transient excited electrons, while K1 and K2 modes produce
the residual excited electrons.

Although K1 and K2 are both long-lived excitations, their
time-dependence is quite different. We plot

∐
nk(t) as a func-

tion of t at three k points Γ, K1, and K2, as shown in Fig. 8.
For L mode (represented by photoexcitation at the Γ point),
the clear transient character is demonstrated. The excitation
only exists when the laser field is present, consistent with
the observations in Fig. 7. However, for K1 and K2 modes,
new differences are observed. Excited electrons in K1 mode
increase monotonically, while

∐
nk(t) at K2 shows an oscilla-

tion with a periodicity of TK2 ∼ 5 fs. These different behaviors
are due to different excitation energies of three modes, orig-
inated from different band structures at the different k-point.
For instance, the oscillation of K2 mode is analogous to the
beating,

qnK1 (t) = A0 cos
(ωK2 − ωr

2
t
)

cos
(ωK2 + ωr

2
t
)
. (30)

For K2 mode,ωK2 = 22.75 eV is the energy difference between
the two electronic bands involved in the optical transition at
K2 (initial and final states), and ω2 = ωr = 21.93 eV is the
driving photon energy. Beat frequency Tb = 4π/(ω1 − ω2)
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FIG. 8. Excitation population ∆
∐

nk(t) at different k as a function of time.
Blue lines represent ∆

∐
nk(t) < 0, and red lines represent ∆

∐
nk(t) > 0 in

population. Widths of the lines are proportional to |∆
∐

nk(t)|.

= 5.07 fs, which is close to the observed oscillation periodic-
ity TK2 . Thus, the oscillation of K2 mode is the beat formed
by the intrinsic band energy difference and the driving laser
frequency. By contrast, K1 mode excitation has very close
energies: ωK1 = 21.59 eV and ωr = 21.93 eV, thus only a
half period of the beat (TK1 = 12.4 fs) is observed in our sim-
ulation. For L mode, the excitation energy is 19.32 eV, far
below the ωr . A non-resonant interference shows up instead
of beating. The rich photoexcitation phenomena discussed
above and the associated complex dynamic behaviors hint for
the needs for developing efficient rt-TDDFT algorithms with
momentum resolution. By introducing a new degree of free-
dom in the reciprocal space, the k-resolved dynamics labels
the distinct excitation processes as well as final distribution of
excited states in the Brillouin zone after the incidence of laser
pulses.

FIG. 9. Schematic of graphene excited by in-plane polarized laser pulse.
The rings with different colors correspond to the electronic states involved
in optical transitions introduced by the laser pulse with a different photon
energy.

C. In-plane excitation

For a laser pulse with its field polarization lying paral-
lel to the atomic plane of graphene (i.e., normal incidence),
adding a vacuum layer along the laser polarization direction
is not possible for the periodical extended system such as
graphene. Therefore we adopt the vector potential approach to
simulate the in-plane laser-graphene interaction. The graphene
sheet is illuminated with a linearly polarized laser pulse, as
shown in Fig. 9. We note that in-plane excitation is well
described by Fermi’s golden rule. Only the bands with an
energy gap ∆Eg(k) equal to the photon energy ω will be
excited. As a result, in-plane polarized laser excites electrons
near the Dirac point for photon energies ≤5 eV, see Fig. 9.
The momentum-resolved simulation will distinguish the pho-
toexcitation induced by a laser pulse with different photon
energies ω.

Here, we use four different wavelengths λ = 1200 nm,
600 nm, 400 nm, and 300 nm for the laser pulse, corresponding
to photon energies ω = 1.03, 2.06, 3.10, 4.13 eV, respectively,
to excite graphene in the in-plane direction. For simplicity, the
laser field is polarized perpendicular to the C–C bond of the
graphene lattice (referred to as the y direction). The momen-
tum resolved excitation patterns in the reciprocal space are
shown in Fig. 10(a), with the corresponding band energy dif-
ference ∆Eg(k) shown in Fig. 10(b). It is clear that only the k
points with ∆Eg(k) = ω are excited. This agreement justifies

FIG. 10. Comparison of (a) distribu-
tion of excited electrons on different k
points in the Brillouin zone of graphene
and (b) corresponding energy differ-
ences in the electronic bands around the
Dirac points.
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the validation of the vector gauge used in the current TDDFT
implementation.

Furthermore, we note that the presence of strong laser
field breaks the six-fold rotational symmetry of the graphene
lattice. For instance, with ω = 4.13 eV, photoexcitation at
two M ′ points is absent, while excitations at other symmet-
ric M points are observed. This symmetry breaking is caused
by the presence of linearly polarized laser field along the
y direction.

It can be explained with a two band model of graphene
(see the Appendix). The excellent agreement on the excitation
outcome between the model Hamiltonian and first-principles
quantum dynamics simulations justifies the validity of our rt-
TDDFT algorithm with a vector gauge field. We therefore
expect that it is readily applicable to investigate the quantum
dynamics of a variety of electronic phases such as charge/spin
density waves, Mott insulators, valley electronics, and elec-
tronic melting in two-dimensional materials and conventional
semiconductors.

To demonstrate the general applicability of the present
approach, we tackle photoexcitation induced electron dynam-
ics in a complex material. The layered transition-metal
dichalcogenides such as 1T-TaS2 have been widely studied
in the literature to understand charge density wave (CDW)

FIG. 11. (a) The atomic structure of TaS2. Yellow and blue balls denote the
Ta and S atoms, respectively. (b) The excitation energy as a function of time.
The gray dashed line denotes the field strength of laser pulse. (c) Photoexci-
tation induced carrier distribution in energy at t = 20 fs. Yellow and blue fill
regions denote the distribution of excited holes and electrons, respectively.
The intensity in light yellow and light blue regions is multiplied by ten times.
The gray solid line denotes the electronic density of states in the ground
state.

physics in real materials, whose structure is shown in
Fig. 11(a). The 1T-TaS2 is a typical quasi-two-dimensional
CDW material with a pristine lattice constant of 3.36 Å in the
undistorted 1T phase. In the ground state, the lattice undergoes
a structural reconstruction forming a

√
13 ×

√
13 superstruc-

ture with star-of-David patterns. Laser induced phase dynam-
ics in 1T-TaS2 has been investigated in recent experiments,
where its responses to ultrashort laser pulses play a criti-
cal role. Here we study the carrier distribution in 1T-TaS2

upon ultrafast laser excitation. As shown in Fig. 11(b), the
excitation energy strongly oscillates with the field of laser
pulse. The excitation energy deposited by the laser pulse is
∼12 eV/cell after laser illumination with a photon energy of
~ω = 1.55 eV and a pulse width of 8 fs. The carrier distribution
at 20 fs after passing the laser pulse is shown in Fig. 11(c).
The majority of excited electrons and holes are located at
energies ranging from −2 to 2 eV near the Fermi level. It
indicates that the photoexcitation mainly consists of single-
photon processes as well as a minor fraction of two-photon
processes (with excited electrons located at∼3 eV and holes at
−3 eV).

IV. CONCLUSIONS

In conclusion, we have developed k-resolved rt-TDDFT
algorithms using efficient numerical atomic basis. It enables
large-scale rt-TDDFT simulations of extended systems includ-
ing solids, interfaces, and two-dimensional materials with a
rather small unit cell, significantly reducing the heavy compu-
tational cost of typically rt-TDDFT simulations. Consequently,
k-resolved excitation dynamics in periodical crystal materi-
als is observed. The key advantages of this unique approach
include

(i) The k-resolved real-time evolution algorithm intro-
duces the important k-space resolution and a new
degree of freedom, which is essential to describe key
quantities and important physics in photoexcited con-
densed matter materials. The use of many k-points with
a rather small unit cell also significantly improves the
computational efficiency of rt-TDDFT calculations for
photoexcitation in solids.

(ii) Different from approaches using real space grids
and all-electron full-potential linearized augmented-
planewaves, the adoption of numerical atomic basis
in the present implementation reduces the number of
required basis functions to one-hundredth of its orig-
inal value, making rt-TDDFT computation of realis-
tic large systems (comprising ∼500 atoms and lasting
for ∼1000 fs) plausible. In addition, with a relatively
small real-space cutoff for NAOs, the order-N lin-
ear scaling with respect to the system size can be
achieved.

(iii) Both electronic and ionic degree of freedoms are
evolved, therefore a complete information on elec-
tronic wavefunctions and ionic movements during
real time evolution can be provided for simulations
of complex materials and rich phenomena far from
equilibrium.
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When applied to study the photoexcitation dynamics
of a prototypical model material–graphene, the k-resolved
algorithm enables the observation of k selective excitation
modes. Three distinct modes are excited, located at differ-
ent k. In-plane excitation of the Dirac electrons in graphene
can be understood by assuming an effective vector field of
the laser field, via taking into account the angular dependence
of optical transition matrix elements. This kind of k depen-
dent electronic dynamics is ubiquitous in solids. Thus, the
k-resolved rt-TDDFT algorithm is an important develop-
ment for investigating ultrafast photoexcitation dynamics and
electron-electron scattering and is expected to be widely used
in the future.
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APPENDIX: THE TWO-BAND MODEL OF GRAPHENE

The ground state Hamiltonian of the two-band model of
graphene reads

H0(kx, ky) = vF(kxσx + kyσy), (A1)

where kx, ky is the k coordinate, σ is the Pauli matrices,
and vF is the Fermi velocity (vF = 1 eV bohr for simplifica-
tion). The units of kx and ky are chosen as bohr−1. The energy
unit is thus eV. The eigenvalues and eigenvectors are solved
as

E0 = −

√
k2

x + k2
y , φ0 =

√
2

2

*...
,

−1
kx + iky√
k2

x + k2
y

+///
-

, (A2)

E1 =

√
k2

x + k2
y , φ1 =

√
2

2

*...
,

1
kx + iky√
k2

x + k2
y

+///
-

. (A3)

Thus, the initial state wavefunction is the ground state
ψ(t = 0) = φ0.

A vector field polarized along y can be introduced as

H ′(t) = A(t)σy, (A4)

where A(t) is the vector gauge field. The time-dependent
Hamiltonian is thus

H(t) = H0 + H ′(t). (A5)

The wavefunction at time t can be obtained from time-
dependent Schrödinger equation,

|ψ(t)〉 = exp[−iH(t)t]|φ0〉, (A6)

which can be expanded with |φ0〉 and |φ1〉 basis,

|ψ(t)〉 = c0(t)|φ0〉 + c1(t)|φ1〉, (A7)

where
ci(t) = 〈φi |ψ(t)〉 (A8)

is the time-dependent coefficients. All equations are solved
numerically with the qutip package.122,123

We can reproduce the symmetry breaking in the distri-
bution of excited electrons in k space induced by linearly
polarized laser. We analyze the coefficients of |c2(t)|2 with
kx = cos θ, ky = sin θ, under the vector field A = 0.2 bohr−1,
where θ is the angle between k and A, as shown in Fig. 12.
Thus, the energy difference ∆Eg(k) = 2.0 eV. These k points
are only excited with ω = 2.0 eV, consistent with the results
from TDDFT and Fermi’s golden rule.

To explain the origin of the symmetry breaking, the
excited electrons at different k points at the end of laser
pulse |c2(t = 50 fs)|2 are shown in Fig. 12(a). It suggests that
the effect of linearly polarized laser on point k is not solely
characterized by the A field but also related to the angle θ
between k and A. With θ = 0 and π, i.e., the k is parallel/anti-
parallel to the A field, the excitation is fully suppressed, while
the excitation is the maximum with θ = π/2 and 3π/2. An
effective field Aeff = A sin θ, always perpendicular to the vec-
tor k, is thus introduced to induce electronic transitions at
k = (kx = cos θ, ky = sin θ), as shown in Fig. 12(b). It explains
the origin of the symmetry breaking in TDDFT simulations
(Fig. 10). The excitations at k points are the results of the
combined effects of energy match and the angle θ between the
k − K and A field, where K is the coordinates of the adjacent
Dirac point. Since an A field is along y, sin θ = 0 for all the k

FIG. 12. (a) The excited electrons |ci(t
= 50 fs)|2 at k point (sin θ, cos θ), as a
function of the angle θ between A and
k. (b) Sketch of the effective vector field
Aeff of a linearly polarized laser field.
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points with k − K parallel to the polarization direction. Thus,
this is no effective field to introduce photoexcitations at the
two M ′ points.
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