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ABSTRACT: Two low-energy excitations of a single water molecule are observed via inelastic
electron tunneling spectroscopy, where a significant enhancement is achieved by attaching the
molecule to the tip apex in a scanning tunneling microscope. Density functional theory
simulations and quantum mechanical calculations of an asymmetric top are carried out to reveal
the origin of both excitations. Variations in tunneling junction separation give rise to the
quantum confinement effect on the quantum state of a water molecule in the tunneling junction.
Our results demonstrate a potential method for measuring the dynamic behavior of a single
molecule confined in a tunneling junction, where the molecule−substrate interaction can be
purposely tuned.

The atomic structure of water and its dynamic behavior
play an indispensable role in a large class of processes in

physics, chemistry, and biology as well as in technology
developments. For example, water molecules confined in one-
dimensional carbon nanotubes exhibit abnormally large
permeability,1 and those in a biological nanopore can mediate
the recognition of DNA sequences.2 The structure, stability,
functionality, and reactivity of biomolecules and H-bonded
materials1,3,4 are closely related to the rotational and
vibrational behavior of water molecules at the nanoscale.
Optical spectroscopy and diffraction technologies5−8 have

been employed widely in probing the rotational and vibrational
modes of water molecules in various environments. High
spatial resolutions up to the single-molecule scale, however, are
strongly desired to fully understand the behavior of water
molecules in the confined environments such as on a
reconstructed atomic surface or in a nanocavity. Scanning
probe microscopies, including scanning tunneling microscopy
(STM) and atomic force microscopy (AFM), are unique in
imaging surfaces with ultimate atomic resolution. High-
resolution topographic images of water clusters on surfaces
have been obtained, revealing characteristics and novel
phenomena in hydrogen bond networks.9−11 In particular,
inelastic electron tunneling spectroscopy (IETS) enables
single-bond vibrational sensitivity with subangstrom spatial
resolution.12−14 Bending and stretching modes with energies of
>100 meV have been detected for individual water
molecules.15 With a Cl-functionalized STM tip, nuclear
quantum effects on H-bonding interaction of water molecules
have been revealed by enhanced IETS. Strong tip height-

dependent IETS peaks of a single molecule may reveal a
variety of physical processes and mechanisms. IETS of CO on
the Cu(111) surface, for example, is used to monitor the
formation of a metal nanocontact.16 Nonetheless, probing the
rotational and vibrational modes of a single water molecule
that are typically below 100 meV in energy is still extremely
challenging.
Here we report a study in which we probed low-energy

excitations of a single water molecule through tip-enhanced
IETS. Two low-energy inelastic peaks are observed when the
water molecule is attached to the STM tip apex. The energy of
the modes is sensitive to the tunneling junction distance,
indicating the influence of the substrate on the structure of the
molecule at the tip apex. Density functional theory (DFT)
simulation and theoretical calculation are carried out to
identify the corresponding vibrational and rotational states,
which also manifest the dynamic behavior of the single water
molecule under different interaction strengths with the
substrate as the tip−substrate distance changes.
The experiments were performed with a home-built

scanning tunneling microscope operating at 12 K and with a
base pressure of 10−11 Torr. The Cu(100) surface was cleaned
by cycles of Ar+ sputtering and annealing at 800 K. Atomic-
thickness insulating Cu2N islands were grown by sputtering the
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Cu crystal surface with nitrogen ions N+ at a vacuum pressure
of 10−5 Torr and subsequent annealing at 500 K for 100 min.
Water molecules are dosed onto the sample surface with a
partial pressure (ΔP) of ∼10−11 Torr for 60 s while the crystal
was kept in the cryogenic STM stage. The W tip was
electrochemically etched and annealed in vacuum to remove
the oxide on the tip surface. Tunneling spectroscopies were
performed with a lock-in amplifier by applying a sinusoidal

modulation (264 Hz, 8 mV in amplitude) in the sample bias
and measuring the corresponding modulation in the tunneling
current with feedback off. The spectroscopies were averages of
three scans with sample bias range from −100 to 100 mV.
Figure 1a shows a topographic image of the sample surface

with multiple Cu2N islands that appear lower than the Cu
surface due to the lack of density of states. The atomic
structure of the Cu2N islands is shown in panels b and c of

Figure 1. Cu2N islands on a Cu(100) surface. (a) STM topography of Cu2N islands as grown on a Cu(100) surface. Image size: 12 nm × 12 nm;
imaging condition at V = 1 V and I = 0.5 nA. (b and c) Atom-resolved topographic image and atomic geometry of Cu2N, respectively. Cu atoms
and N atoms are shown as red and yellow spheres, respectively. (d) Electron tunneling spectroscopy data taken on Cu2N islands and on a bare
Cu(100) surface, at positions marked in panel a.

Figure 2. Manipulation of a single water molecule onto the STM tip. (a) STM topography of a Cu2N island with two adsorbed water molecules in
middle of the island (left), acquired with the bare W tip. STM topography of the same area after manipulating one of the water molecules to the tip
(right). The manipulation is done by a voltage pulse. Images are acquired with at 50 mV and 0.1 nA. (b) d2I/dV2 spectra acquired over the center
of a water molecule with the bare W tip and on a Cu2N surface with a water-functionalized tip after manipulation.

Figure 3. IETS of a single water molecule attached to the STM tip apex. (a) STM topography of the surface with a single water molecule attached
to the STM tip. (b) d2I/dV2 spectra taken at different locations on the surface, as marked in panel a. Tunneling gap set by V = 50 mV and I = 0.5
nA. The inset shows the variation in the peak energy of IETS. (c) Normalized d2I/dV2 spectra taken over the center of the N atom on the Cu2N
substrate at different tip−substrate distances. The blue dotted lines highlight the shifts of peak positions.
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Figure 1. The distance between two adjacent N atoms is 3.7 Å,
slightly larger than the lattice constant of the Cu(100) surface.
This lattice mismatch limits the size of Cu2N islands to several
nanometers. The protrusions in the topographic image
correspond to one-half of the 4-fold symmetric hollow sites
of four adjacent Cu atoms on the Cu(100) surface, and the
nitrogen (N) atoms adsorb on the other half of the hollow sites
forming incommensurate c(2 × 2) lattice.17,18 The overall
coverage of Cu2N islands in our experiment is in the range of
50−60% (see the Supporting Information).
Figure 1d shows the scanning tunneling spectroscopy (STS)

data measured on the Cu2N island and the bare Cu(100)
surface. The local density of state (LDOS) of Cu2N exhibits a
band gap of >4 eV, illustrating electronic decoupling from the
conducting metallic substrate underneath. The conduction
band edge of Cu2N is ∼2 eV above the Fermi level, and the
LDOS in the energy range of 2−2.5 eV varies when taken on
different regions of the Cu2N island and on islands of different
sizes due to the quantum confinement effect.19

After deposition, individual water molecules were observed
on the Cu2N island while water clusters were observed at the
edges of the islands and on the Cu(100) surface. Most water
molecules adsorbed onto the bare Cu surface, indicating the
hydrophobic nature of the Cu2N surface. The water molecule
can be manipulated to the tip end by applying a voltage pulse
(1 V in amplitude, 1 s in duration) in the sample bias. Figure
2a shows the topography before and after the manipulation
process. We note that the spatial resolution in topography is
apparently increased with a water molecule attached to the
STM tip, which is a common practice in STM studies of single
molecules.20−22 With closer scanning conditions, Figure 3a

shows the topographic image of water molecules adsorbed on a
Cu2N surface exhibiting a double-lobe structure similar to that
as imaged on a NaCl film.23 In addition, the imaged lattice
structure of the Cu2N surface changes from square to
orthorhombic, due to the modification in LDOS of the STM
tip with the water molecule attached at its apex.24

Detecting low-energy excitation mode in water molecules by
IETS with a normal STM tip is difficult due to the strong
electronic coupling to the substrate. Significant variation in
IETS, however, is observed after the manipulation of the water
molecule onto the tip apex. Two antisymmetric IETS peaks
with energies of ∼24.5 meV and ∼6.5 meV are clearly
observed via spectroscopy acquired with the water-function-
alized STM tip, as shown in Figure 2b.
The IETS peaks originate from the water molecule attached

to the STM tip and have a slight dependence on the surface
location where the d2I/dV2 spectra are measured. Figure 3b
shows IETS data recorded on various surface locations as
marked in Figure 3a. The energy of the IETS peak around 7
meV remains the same across the surface, while the energy of
the 25 meV peak shows a variation of a few millielectronvolts.
The energy of the peak in IETS taken on water molecules
absorbed on Cu2N, both in the middle and at the edge of the
island, is slightly higher than that taken on other locations
(values shown in the inset of Figure 3b). Further detailed
measurements show no variation in peak energy in IETS taken
across the Cu2N island, despite the apparent changes in the
substrate LDOS (see the Supporting Information).
To investigate the effect of molecule−substrate interaction

on the observed IETS peaks, we varied the tunneling gap
distance by increasing the sample biases from 10 to 100 mV

Figure 4. DFT simulation of the water molecule confined between the STM tip and the Cu2N/Cu(100) substrate. (a) Theoretical setup of a single
water molecule attached to the tip. (b) Optimized geometry parameters of the water molecule as a function of tip height. Black and red lines
represent the O−H bond length and H−O−H angle of the water molecule, respectively. The blue area indicates the approximate range probed by
the experiment. (c) Calculated vibrational modes of the water molecule as a function of the tip height. (d) Calculated excitation energy for the
rotational eigen modes. For panels c and d, within the energy range of 0−35 meV. The experimental data are also shown. (e) Total energy
difference of a water molecule rotating around the z axis, with the tip−substrate distance set at 6.5 Å.
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while keep the tunneling current at 100 pA. The corresponding
tunneling gap distance changes by approximately 0.8 Å
through the measurements (see the Supporting Information).
Energies of both peaks changed accordingly, from 24.3 to 25.8
meV and from 7 to 6 meV, for the high- and low-energy peaks,
respectively.
The energies of the two observed IETS peaks are within the

range of both rotational and vibrational modes of water
molecules. To reveal the nature of both excited water modes,
we performed DFT calculations with the VASP package. van
der Waals interactions have been included by choosing the
OptB88-vdw exchange-correlation functional.25 Projector-
augmented wave pseudopotentials26 and an energy cutoff of
520 eV were used. The simulation box was 14.51 Å × 14.51 Å
× 20 Å, and the k-point sampling is 3 × 3 × 1. A Cu2N layer
was used to represent the substrate, and the STM tip was
simulated with 10 tungsten atoms. The apex of the tip was
located above one of the nitrogen atoms in the substrate. The
tungsten atom at the apex is relaxed, while all other atoms are
fixed in all calculations. Before structure optimization, the
water molecule was set to two different configurations. In one
configuration, the molecular plane was set parallel to the
substrate. In the other configuration, one of the OH bonds was
set perpendicular to the substrate. Both initial configurations
resulted in the same final water structure after relaxation, which
ensured the most stable state for further analysis. In the final
stable configuration, the oxygen atom of the water molecule
bonds with the atom at the tip apex, and the dipole moment of
molecule is nearly parallel to the z axis, as shown in Figure 4a.
Simulations were carried out by varying the tip−substrate

distance from 5.7 to 7.7 Å. At each value of the tip−substrate
separation, the molecular configuration of water was derived
from the equilibrium state of the molecule, and all nine
vibrational modes of the water molecule are calculated (see the
Supporting Information). According to the DFT calculations,
the O−H bond length decreases from 0.983 to 0.976 Å and the
H−O−H angle increases from 104.8° to 107.9° when the tip−
substrate separation increases from 5.7 to 7.7 Å as shown
Figure 4b. The approximate range probed by the STM
experiment is marked by the blue region. Figure 4c shows the
vibrational modes that are within the energy range of 0−35
meV. The energies of experimentally measured IETS peaks are
shown, as well. The low-energy peak is close to the T-y mode,
and the high-energy mode is close to the L-x mode. Assigning
the 25 meV peak to the L-x mode, however, encounters
difficulty in that they do not change in the same direction
when the tip−substrate distance changes, nor do they vary with
similar sensitivity.
We notice that the water molecule also possesses rotational

freedom when bonded to the apex atom of the tip. Rotational
modes are then derived from the atomic configuration of the
water molecule under various tip−substrate distances. The
calculation is carried out following a standard quantum
mechanical computational procedure,5,27−30 where the ex-
citation energies from the ground state to the rotational states
are obtained (see the Supporting Information). The results are
shown in Figure 4d, where the rotational modes within 35
meV in energy are plotted as a function of the tip−substrate
distance. The mode energy increases slightly as the tip height
increases. The 25 meV IETS peak matches best with rotational
states 321 and 322 when excited from ground state 000.
Quantum state JKaKc is characterized by the total rotational
angular momentum (J) and two projected momenta (Ka and

Kc). For rotational states 321 and 322, total angular momentum
J is not along the symmetric axis of the water molecule. This is
possible if we consider the reality that the water molecule may
not be settled in a fully symmetric configuration as shown in
the calculations. Experimentally, a tilted water molecule is
plausible, as a symmetric water molecule would likely give the
topographs a double-tip effect. Our experimentally measured
topographs are clearly free of such artifacts, ruling out this
possibility.
To further validate the assignment of the rotational modes,

we calculated the energy barrier for water rotation along the z
axis. Figure 4e shows the potential energy as the water
molecule rotates around the z axis. The total energy difference
is <11 meV, indicating that the water molecule in the
rotational state with an energy around 25 meV is feasible. The
IETS peak at 6 meV, for the same reason, cannot be assigned
to the rotational mode by considering this rotational energy
barrier. The decrease in the energy of this 6 meV mode as the
tip−substrate distance increases provides further evidence that
it is a vibrational mode. This is why only two modes are
observed in the IETS spectra, partly due to the resolution of
the measurements and the selection rule of excitation by
tunneling electrons that deserves further investigations.
We also considered the effects of the electric field because

there was a bias voltage applied in the tunneling junction
during the experiment. An electric field of ≤109 V/m has been
applied along the z axis in the simulation, and the water
molecule is relaxed to its ground state. No significant change in
energy has been derived in either rotational mode (see the
Supporting Information). Previous studies revealed absorption
bands at 88 cm−1 (10.9 meV) and 158 cm−1 (19.6 meV) for
water molecules confined within a nanocavity with the electric
field perpendicular to the dipole moment of water
molecules,7,31 and the two resonance peaks strictly depend
on the direction of the electric field. The inconsistency may
come from the difference in environment or excitation method.
For water molecules trapped in a nanocavity with a high-order
symmetry, they behave more like a rotator with three
rotational axes. When the water molecule is attached to the
STM tip, the rotational freedom is restricted and only some of
the rotational quantum states can be excited. The selection rule
for optical excitation in optical absorption measurements is
also different from that for excitation by tunneling electrons in
STM experiments14 and the rotational transition in inelastic
neutron scattering (INS) spectra.5

In summary, two low-energy excitations of a single water
molecule have been detected in inelastic electron tunneling
spectroscopy by attaching the molecule to the STM tip. With a
change in the tip−substrate distance, variations in the energy
of the excitations are measured. Combined experimental data
and theoretical calculation reveal that the low-energy excitation
around 6 meV is related to the vibration of the molecule and
the high-energy peak around 25 meV is very possibly due to
the excitation of a rotational quantum state. The results
demonstrate an enhancement method in detecting low-energy
excitations of a single molecule confined in the STM tunneling
junction, where the dynamic behavior of the molecule can be
further tuned by the tip−substrate distance.
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