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1.  Introduction

Energy valley is the extreme point of energy dispersion in 
solid crystals. The energy extremum valley in band structures 
is considered as a new degree of freedom of electrons with 
the capability to manipulate the movement of electrons in a 
controlled way, fostering valleytronics in analogy with spin­
tronics. For example, graphene, a hexagonal carbon mono­
layer, has two valleys +K  and −K . The two energy-degenerate 
but non-equivalent valleys in non-magnetic materials (such as 
graphene) can be used as a discrete degree of freedom because 
of the large valley separation in momentum space. According 
to the semiclassical theory, which includes the Berry phase 
correction to the group velocity of electronic structure band 
dispersion, the movement of the electron wave packet is

Ε
=

∂
∂

− ×Ωr
k

k

e
E k˙

1
,n  ( ) ( )

� �

where E is the applied electric field and Ω k( ) is the momentum 
dependent Berry curvature summing over all occupied states 
[1–3]. The valley Hall effect can be accessed by transport 
experiments where charge carriers at two different valleys 
flow to the opposite transverse direction driven by the non­
vanishing Berry curvature Ω k( ) in the nonequilibrium electron 
occupation of both valleys [4–6]. The massive Dirac fermion 
inherited from graphene and transition metal dichalcogenide 
MX2 (M  =  Mo, W; X  =  S, Se, Te) monolayers with broken 
inversion symmetry (IS) emerges as prototypical candidate for 
valley Hall effect.

The valley polarization of a material is usually dependent 
strongly on external magnetic fields or proximity-induced 
interactions of magnetic substrate, making it very difficult to 
achieve intrinsic valley polarization without external pertur­
bation. A nonequilibrium valley carrier can be obtained via 
circular dichroism under the constraint of valley dependent 
optical selection rules, namely conservation of angular 
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momentum [7–9]. A few recent experiments show only small 
valley splitting can be generated in the presence of an external 
magnetic field in monolayer MoSe2, MoTe2, WSe2 materials 
and other nonmagnetic materials [10–22]. Although the valley 
splitting induced by the proximity-induced Zeeman effect 
can reach 300 meV in MoTe2/EuO heterostructure [23, 24], a 
magnetic substrate possessing a large magnetism is essential 
and no experiment at present shows the possibility of material 
growth. The intrinsic valley polarization without external per­
turbation (magnetic field) is still missing.

Vanadium disulfides/diselenides are members of transition 
metal dichalcogenide compounds, with interlayer interaction 
coming from weak van der Waals forces. Similar to MoS2, 
vanadium disulfide compounds also have two phases, namely 
2H phase belonging to D3h point group with mirror symmetry 
and 1T phase with IS, respectively. In contrast to MoS2, how­
ever, VS2 has an intrinsic magnetic moment [25, 26] and shows 
an electronic transition from metallicity to semiconducting 
because of the quantum size effect. Although phase transition 
between 2H and 1T can be realized via temperature control 
or applying strain, 2H structure is usually more stable up to 
high temperatures [27, 28]. Recently, ultrathin VS2 nanosheet 
stacked with less than five layers and an approximately 0.4 nm 
thick VSe2 monolayer nanosheet have been successfully 
synthesized [29, 30], providing a real material candidate to 
explore intrinsic valley properties without external magnetic 
field [31].

In this work, we study the electronic properties of a 2H–
VSe2 monolayer with broken IS and time reversal symmetry 
(TRS) by using first-principles calculations. We found that in 
such a magnetic two-dimensional (2D) material, the bands at 
the two non-equivalent valleys are degenerate without spin–
orbit coupling (SOC) effect. However, after taking the SOC 

into consideration, the bands at the two valleys have a large 
energy splitting, indicating the degeneracy of valley degree of 
freedom is spontaneously broken. The intrinsic valley split­
ting reaches as high as 78.2 meV, which is large enough to 
be easily measurable in experiment. The intrinsic breaking of 
valley degeneracy will induce Berry curvature at two different 
valleys with unequal absolute values. Besides conventional 
approaches using circularly polarized light, valley polariza­
tion can also be obtained by either carrier doping or light 
illumination with proper photon energy, thanks to the exist­
ence of intrinsic valley splitting. Interestingly, the SOC effect 
breaks not only the valley degeneracy, but also the three-fold 
rotational symmetry from the analysis of band structure and 
anisotropic optical absorption.

2.  Methods

All calculations were performed in the framework of den­
sity functional theory using the Vienna Ab Initio Simulation 
Package (VASP) [32]. Interactions between valence electrons 
and ionic cores were described with the projector augmented 
wave (PAW) method [33, 34]. We adopted the generalized gra­
dient approximation of Perdew–Burke–Ernzerhof (PBE) and 
hybrid HSE06 functional for the exchange-correlation energy 
[35, 36]. A plane wave basis set with a cutoff energy of 400 eV 
was used to expand the wave functions. The 2D Brillouin zone 
(BZ) integration was sampled by a 24  ×  24  ×  1 k-grid mesh 
for calculations of electronic properties [37]. A vacuum layer 
with a thickness larger than 15 Å was set in the calculation 
for monolayer VSe2 to ensure decoupling between periodic 
VSe2 layers. For structural relaxation, all the atoms were 
allowed to relax until the atomic force on each atom was 
smaller than 0.001 eV Å−1. Both the lattice constant and the 

Figure 1.  Atomic and electronic structures of 2H–VSe2. (a) Geometric structure of VSe2 in side view. (b) Schematic diagram of the 2D 
first Brillouin zone with special k points along high symmetry line. (c) Spin-polarized band structures calculated by PBE methods. Spin-up 
(spin-down) bands are denoted by red (blue) lines respectively. (d) Orbital projected band structures with spin–orbit coupling calculated 
with PBE methods. Red circle, blue square and green circles represent dz2, + −d dxy x y2 2, +d dxz yz orbital composition respectively. The sizes 
of dots denote the weight of contribution.
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atomic positions were fully optimized. The HSE06 calcul­
ations were also carried out to verify the results. The standard 
exact-exchange mixing parameter α = 0.1 was used for the 
HSE06 functional to keep the same trend of band obtained 
from PBE and HSE06. The SOC effect [38] was explicitly 
included in the calculations. The Berry curvature and Fermi 
surface were calculated at a dense enough mesh by ab initio 
tight binding method, using maximally localized Wannier 
functions (MLWF) implemented in Wannier90 code [39]. Five 
d orbitals for each V atom and three p orbitals for each Se 
atom have been used to construct a real space Hamiltonian in 
the Wannier basis.

3.  Results

The 2H monolayer VSe2 has the D3h point-group symmetry 
as shown in figure  1(a). In such a monolayer, an interme­
diate layer of hexagonally arranged V atoms is sandwiched 
between two layers of Se atoms. Each V atom is surrounded 
by six Se atoms, and each Se atom has three nearest neighbor 
V atoms. The optimized lattice constant is 3.33 Å, and the 
angle of Se–V–Se is 79.1 degrees. The magnetic moment of 
each V atom is calculated to be 1 µB, consistent with previous 
results [25]. The ferromagnetic (FM) state is energetically 
more favorable than the antiferromagnetic (AFM) state by the 
energy difference ∆ = −−E 76.1FM AFM  meV. Then the Curie 
temperature TC is estimated to be about 588 K via the mean-
field approximation and Heisenberg model using the relation 

= −∆ −K T E3

2 B C FM AFM  [40]. In figure 1(b) the first BZ with 

the corresponding high symmetry points is plotted, where two 
non-equivalent valleys are designated as +K  and −K , respec­
tively. The band structure without and with the SOC effect are 
shown in figures 1(c) and (d). The calculated band structure 
of 2H monolayer VSe2 shows that the bands right below the 
Fermi level is spin polarized with a majority (spin-up) comp­
onent. The indirect energy band gap between occupied spin-
up bands and unoccupied spin-down bands is 0.19 eV in PBE 
and 0.69 eV in HSE06 calculations (SI, figure S1 (stacks.iop.
org/JPhysCM/29/255501/mmedia)).

When the SOC is turned on, we found that the degeneracy 
of the energy bands near the Fermi level at the two non­
equivalent valleys is broken. The valley splitting, defined as 
∆ = −+ −E E K E K( ) ( ) , where +E K( ) ( −E K( )) is the energy of 
the valence band at +K  ( −K ) valley, is 78.2 meV by using PBE 
exchange-correlation functional and 112.1 meV if the hybrid 
HSE06 functional is used, equivalent to the case that a valley 
degenerate material is exposed to a 675 Tesla external magn­
etic field [24].

In order to understand why intrinsic valley energy split­
ting shows up in 2H monolayer VSe2, we plot orbital- 
projected band structures around Fermi energy level in the 
energy window from  −2 to 2 eV as shown in figure  1(d). 
The top (bottom) of valence (conduction) band is mainly 
contributed by dxy and −d dx y z2 2 2 ( ) orbitals of V atom at the 
K valleys. A similar composition is observed in other trans­
ition metal dichalgenides such as MoS2. The wavefunc­
tion of V d orbitals can be rewritten in the form of spherical 

harmonics and the on-site contribution of SOC Hamiltonian 
operator is ��ξ= ⋅H L Ssoc  [41]. Since the electron wavefunc­
tion can be reduced to the direct product of spin and orbital 

momentum and the off-diagonal orbital term d H dz isoc2  
= −i xy x y, 2 2(   ) is zero, usually only the spin channel cou­

pled with the same magnetic quantum number can contribute 
to the SOC effect around +K  and −K  valley. However, in VSe2 
the valence band around +K  valley contains 0.24% contrib­
ution from V d d,xz yz orbitals, which is not found at all around 
the −K  valley. The orbital term =d H d i xz yz,z isoc2 ( ) and 

( )= = −d H d i xz yz j xy x y, ; ,i jsoc
2 2  is nonzero, there­

fore the spin term from different orbitals will also exist at the 

+K  valley. The slight difference of orbital composition at two 
valleys plays a crucial role in the intrinsic breaking of valley 
degeneracy.

The tunability of valley splitting is of paramount impor­
tance for practical applications. Previous studies indicated 
that the valley splitting is tunable via the external magnetic 
field [12, 24]. Local strain can intrinsically enhance weak 
ferromagnetic ordering [25, 42], which may invoke a tun­
able valley splitting. To this aim, biaxial strain is adopted to 
realize a tunable valley splitting. The biaxial strain is defined 

as ε = ∆a
a0, where a0 and = +∆a a a0  are the unstrained 

and strained lattice constants, respectively. The calculated 
valley splitting under strain at +K  and −K  valley is shown in 
figure S2. It is found that the valley splitting, changing from 
80 to 75 meV, is linearly dependent on the applied strain in the 
range of  −2%–2%, indicating the significance of deformation 
potential [43].

The distinguishability of nonequivalent valleys is also asso­
ciated with the valley contrasting Berry curvature besides the 
intrinsic valley splitting. Compared to the plane wave method, 
Wannier functions are computationally feasible to obtain the 
Berry curvature and Fermi surface, which should be calcu­
lated at a very dense mesh. Figure 2(a) shows the excellent 
agreement of the band structures obtained by DFT  +  SOC 
and Wannier functions, respectively. The Berry curvature of 
the nth band at k points along z direction perpendicular to the 
2H–VSe2 monolayer can be written as,

∑
ψ ψ ψ ψ

ε ε
Ω = −

−≠′

′ ′

′

k
v v2Im

.n
z

n n

nk x n k n k y nk

n n
2

  ( )
( )

� (1)

The Berry curvature of all occupied band defined as 
Ω = ∑ Ωk f kz

n n n
z( ) ( ) can be obtained by summing over occu­

pied valence bands in Wannier basis. Here v vx y( ) is the velocity 
operator along the x and y direction and =f 1n  for occupied 
bands [3].

We calculated the Berry curvature for the first BZ at a 
500  ×  500 k-point mesh as shown in figures 2(c) and (d). The 
calculated Berry curvature Ωz is sharply peaked and shows 
opposite sign at +K  and −K  valleys due to the lack of IS, which 
is similar to the results of 2H monolayer MoS2, graphene and 
non-magnetic materials [4, 9, 44]. The key difference distin­
guishing 2H–VSe2 from the above non-magnetic materials is 
the asymmetric distribution of Berry curvature. It is observed 
that the Berry curvature at +K  valley has a smaller size but a 
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greater area of distribution compared to that at −K  valley, thus 
generating a zero Chern number.

To utilize valley degree of freedom for next-generation elec­
tronics, the key challenge lies in obtaining a non-equilibrium 
charge carrier imbalance at different valleys, namely, valley 
polarization [7]. Valley polarization can be achieved in 2D 
honeycomb materials via valley-contrasting circular dichroism 
[10–22]. The k-resolved degree of optical polarization η k( ) is 
given as [7, 9],

η =
−

+

+ −

+ −

k
P k P k

P k P k

cv 2 cv 2

cv 2 cv 2
( )

( ) ( )

( ) ( )
� (2)

where ( ) ψ ψ= ±± � �P k p pick x y vk
cv  represents direct interband 

transition matrix for left or right polarized light, �px (�py) is 
the momentum operator and ψ ψvk ck( ) is the wavefunction of 
valence (conduction) bands. We note that the indirect band 
transition and intraband absorption is ignored here, not only 
because their contribution is several orders of magnitude 
smaller than direct interband transitions, they do not lead to 
effective valley polarization either due to long absorption 
timescales and random phonon scattering effects. As shown 
in figure  2(b), it is observed that the valley optical selec­
tion rule to circularly polarized light indeed emerges with 
η = − +k 1 1( ) ( ) at the + −K K( ) valley, therefore allowing the 
circularly polarized light to selectively inject photocarriers 
into one of the two valleys.

In addition to complicated conventional approach using 
circularly-polarized light, a unique advantage of magnetic 
VSe2 is that valley polarization can also be achieved by easier 
methods such as hole doping and illumination with light of 

proper energy, thanks to the emergence of intrinsic valley 
energy splitting. Figure  3 shows the dependence of band 
occupation on the doping concentration of 0, 6.2  ×  1013 
⋅ −e cm 2, 10.4  ×  1013 ⋅ −e cm 2, respectively. For hole con­

centration lower than 6.2  ×  1013 ⋅ −e cm 2, the +K  valley is 
unoccupied while the −K  valley is fully occupied. Thus the net 
valley polarization is achieved. When the hole concentration 
further increases to 10.4  ×  1013 ⋅ −e cm 2, both valleys and the 
hole pocket at Γ will become partially occupied. Therefore, 
hole doping can bring a nonequilibrium electron occupation 
between −K  and +K  valleys, which generate a net transverse 
current in 2H monolayer VSe2 by in-plane electric field. It 
is worth mentioning that the valley splitting remains nearly 
unchanged for all doping concentration (the variation is less 
0.3 meV), indicating the valley property is robust against hole 
doping. Besides, we expect that hole doping can be easily 
achieved via organic molecule adsorption on VSe2 mono­
layers. About 0.2e–0.3e per molecule transferred from gra­
phene to electron-accepting molecules TCNQ and F4-TCNQ 
has been successfully achieved [45]. In addition, intrinsic 
charge carriers introduced by thermal excitation is sufficient 
to achieve valley polarization at room temperature.

The valley polarization can also be achieved by proper 
light illumination without considering optical selection rules. 
The energy difference ∆ = −E k E k E kv

c
c v( ) ( ) ( ), which is 

defined as the direct subtraction between conduction band 
energy and valence band energy, is obtained by using the 
Wannier interpolation, as shown in figure 4(a). Only focusing 
on the direct transition from valence band to conduction 
band, the energy difference equals the photon energy that is 
used to excite VSe2. The energy minimum at +K  ( −K ) valley 

Figure 2.  (a) The energy bands obtained from the DFT  +  SOC (blue) calculations overlaid by the Wannier interpolation (red dots). (b) The 
k-resolved degree of optical polarization ( )η k . (c) Berry curvature for the occupied bands including the first Brillouin zone of 2H–VSe2. (d) 
The Berry curvature along high symmetry points.
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is 0.75 eV (0.66 eV) with PBE method, and can increase to 
0.91 eV (0.78 eV) with hybrid HSE06 functional. Therefore 
if light with a proper photon energy of 0.78 eV (wavelength 
1590 nm) is used to photoexcite VSe2, only the −K  valley will 
be excited, generating a valley-polarized carriers. Therefore, 
light with appropriate photon energy can also be used to pro­
duce valley polarization.

The presence of SOC induces not only intrinsic valley 
splitting due to the broken IS and TRS, more interestingly, 
it also breaks the three-fold rotational symmetry in elec­
tronic structures. Based on the three-fold rotational sym­
metry of the crystal structure in 2H monolayer VSe2, ∆Ev

c 
at the first BZ in figure 4(a) can be divided into three parts, 
named ∆ ∆ ∆E E EI , II , IIIv

c
v
c

v
c( ) ( ) ( ), respectively. The differ­

ence ∆ −E I IIv
c( ) and ∆ −E I IIIv

c( ), as illustrated in figures 4(b) 
and (c), shows that ∆Ev

c at the three parts are not completely 
coincident, which is against the demand of three-fold rota­
tional symmetry in atomic structure. The difference is more 
prominent around the M points. The breaking of three-fold 
symmetry is a result of SOC in the electronic interactions in 
the magnetic VSe2.

The breaking of three-fold rotational symmetry also 
exhibits itself in the optical absorption properties of VSe2. We 
find that the off-diagonal term of dielectric function is nonzero 
when SOC effect is included in calculation. To see straight­
forwardly the effect of the off-diagonal term of the absorp­
tion coefficient, we calculate angle-dependent absorption 

spectrum. The absorption coefficient with and without SOC 
effect calculated by HSE06 functional is shown in figure S3. 
Assuming the following two equivalent cases: (a) 2H mono­
layer VSe2 sample is rotated from 0 to π2  radian, but the lin­
early polarized light keeps still; (b) the linearly polarized light 
is rotated while the sample stays the same. For simplicity, 
only the angle-dependent absorption coefficient at xx direc­
tion α θxx( ) is considered (other terms are similar), which can 
be rewritten as,

α θ θ α θ α θ θ α= ⋅ + ⋅ − ⋅cos sin 2 sin cos ,xx xx yy xy
2 2( )   ( ) ( ) ( ) ( )

�
(3)

where αxx, αyy and αxy are the absorption coefficient comp­
onent at three direction for θ = 0, respectively. Here x direc­
tion denotes the direction of V–V bond in the VSe2 layer, and 
the rotation angle θ is the angle between the x direction and the 
polarization direction of linearly polarized lights. The α θxx( ) 
is the absorption coefficient at x direction at a given rota­
tion angle. The first absorption peak is located at the corre­
sponding energy of 1.41 eV (SI, figure S3), which is chosen 
to obtain α θxx( ).

As figure  4(d) illustrates, the light absorption coefficient 
is isotropic without SOC effect, which meets the demand 
of the three-fold rotational symmetry of atomic structure 
(α α α= =, 0xx yy xy ). However, when the SOC effect is con­
sidered, the absorption coefficient shows angle dependence 
as a result of anomalous appearance of αxy, which means the 

Figure 3.  The Fermi surface at the hole doping concentration of 0, × ⋅ −e6.2 10 cm13 2,  × ⋅ −e10.4 10 cm13 2, respectively.

Figure 4.  (a) The energy difference (in unit of eV) between the top of the valence band and the bottom of the conduction band. (b) and 
(c) The energy difference (in unit of meV) between the (II, III) and I part, respectively. (d) The angle-dependent absorption coefficient at a 
certain energy without SOC (black) and with SOC (blue) effect, respectively.
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breaking of optical isotropy. Due to the equivalent effect of 
the linearly polarized light along the +x and x–  direction, the 
angle-dependent absorption coefficient shows an oscillating 
period of π. Combining the analysis of band structure and the 
angle-dependent absorption coefficient, we conclude that a 
pure SOC effect can break optical isotropy held by macro­
scopic crystal symmetry.

The refractive index of a material is directly proportional to 
the arithmetic square root of complex dielectric constant. Our 
results show that the complex dielectric constant along the xx 
and yy directions is the same without SOC effect, meaning the 
equivalent refractive index of the two directions, so no light 
deflection happens. However, the complex dielectric constant 
is anisotropic when SOC is considered, generating an unequal 
refractive index, then light deflection can be obtained. The 
intrinsic magnetic moment has almost remained unchanged 
before and after SOC effect is considered, which can also be 
treated as an external magnetic field. The above anisotropic 
phenomenon including the complex dielectric constant and 
absorption coefficient is induced by SOC, which is different 
from conventional magneto-optic effect. We estimate from 
the valley splitting of the valence band with and without SOC 
that the effective magnetic field associated with SOC amounts 
to ~700 T for the magnetic VSe2. This would introduce giant 
magneto-optic effect that is radically different from conven­
tional ones coming from light–matter interaction.

4.  Conclusions

In summary, we have studied the breaking of the valley 
degeneracy and optical isotropy induced by the SOC effect 
in 2H magnetic VSe2 monolayer film by using first-principles 
calculations. Because of the broken IS and TRS, the valley 
splitting about 78.2 meV is large enough to obtain the intrinsic 
valley polarization in monolayer transition metal dichalco­
genide at room temperature. Additionally, the valley splitting 
can be tuned via biaxial strain, providing an effective strategy 
to realize valley polarization and to manipulate the valley 
degree of freedom at will.
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