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ABSTRACT

We investigate, using benzenoid graph theory and first-principles calculations, the magnetic properties of arbitrarily shaped finite graphene
fragments to which we refer as graphene nanoflakes (GNFs). We demonstrate that the spin of a GNF depends on its shape due to topological
frustration of the π-bonds. For example, a zigzag-edged triangular GNF has a nonzero net spin, resembling an artificial ferrimagnetic atom,
with the spin value scaling with its linear size. In general, the principle of topological frustration can be used to introduce large net spin and
interesting spin distributions in graphene. These results suggest an avenue to nanoscale spintronics through the sculpting of graphene
fragments.

Carbon-based magnetism1 is intriguing, especially when
derived from graphene, a material touted as the basis for
next generation electronic and spintronics devices.2 The
recent discovery of true two-dimensional (2D) graphene
crystals3,4 has stimulated intensive study of this system
revealing many of its exciting properties such as massless
quasi-particles,5 high mobility and coherence,3 room-tem-
perature quantum hall effect,6 and half-metallicity7 to name
but a few. These properties are significant not only from a
fundamental perspective, but also for technological applica-
tions. To date, most studies on graphene have been focused
on its mesoscopic properties related to electronic conductivity
with only a few exceptions explicitly addressing the intrinsic
magnetic properties of certain graphene-derived structures,
namely the graphene nanoribbons (GNRs).7-12 The zigzag
edges of GNRs introduce a localized edge state contributing
to a flat band at the Fermi level. These edge states are spin
polarized and localized on either side of the GNR, with
antiparallel spins for a total spin of zero.11

A GNR has one-dimensional (1D) straight edges, which
can be considered as a special case of the more general,
arbitrarily shaped graphene fragments that are finite in both
dimensions to which we refer as graphene nanoflakes
(GNFs). Understanding the properties of GNFs is important
because the basic functional components of future electronics
or spintronics devices will need to be at the nanometer scale
to uphold the trend of increased performance with minia-
turization (Moore’s law). In fact, very recent experiments
have achieved graphene features at the scale of tens of
nanometers.2 Meanwhile, quantum confinement and varia-
tions of the edges in GNFs give rise to rich electronic and
magnetic properties, as we show below. The previously
reported magnetic properties of GNRs7-12 are merely the tip

of the iceberg for magnetic applications involving graphene
fragments.

In this paper, we characterize, using benzenoid graph
theory and first-principles electronic structure calculations,
arbitrarily shaped hydrogen-terminated GNFs, starting with
the 3-fold and 6-fold highly symmetric types, as well as those
related to finite GNRs; these shapes are shown in Figure 1
panel c to panel h. All these structures have zero intrinsic
spin except the one in Figure 1e, the zigzag-edged triangular
GNF in which a linear-scaling net spin arises due to
topological frustration of theπ-bonds. We also discuss the
possibilities for applying the principle of topological frustra-
tion in the design of structures with large spin and in the
context of circuits for spintronics applications.* To whom correspondence should be addressed.

Figure 1. Various types of graphene nanoflakes stitched up from
smaller subflakes (darker shade). Black lines are stitches, and the
hydrogen termination along the edges is not shown. (a) The two
sublattice sitesA (white) andB (black) of graphene. (b) GNFs
constructed by stitching upA-B balanced hexagons; the resultant
triangular GNF hasNA ) 7, NB ) 6, and total spin 0.5. (c)
GNF that corresponds to zigzag-edged GNRs. (d) GNF that
corresponds to armchair-edged GNRs. (e) Zigzag-edged triangular
GNF with four edge carbon atoms. (f) Armchair-edged triangular
GNF. (g) Zigzag-edged hexagonal GNF. (h) Armchair-edged
hexagonal GNF.
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In electronic structure calculations based on the tight-
binding approximation (TBA), if only nearest-neighbor
hopping is considered and the on-site energy set to zero then
the secular equation readsDx ) Exwith D being the hopping
matrix andE the eigenvalues. The dimension ofD is equal
to the number of orbitals, andD has as nonzero elements
only those coupling orbitals on adjacent atoms. In special
cases,D becomes singular and zero eigenvalues arise, which
are called nonbonding states (NBSs); the atomic structure
corresponding to this case is referred to as a “singular
molecular graph”. In a singular graph, topological frustration
occurs, that is, all theπ-bonds cannot be satisfied simulta-
neously, implying possible spin-aligned singly occupied
molecular orbitals (SOMOs) which can arise from degen-
eracy at the Fermi level. Characterizing singular graphs has
been a long-standing problem in graph theory. In 1985, the
first structural identification of singular benzenoid graphs
was achieved13 but it took another 20 years to prove a
theorem14 that establishes rigorously the connection between
structural characteristics and the eigenvalue distribution.
Applied to a GNF consisting of benzenoid rings and bounded
by a single topological circuit, this theorem reveals that the
maximum number of pairwise nonadjacent verticesR and
edgesâ of the graphG are given byR(G) ) â(G) + η(G)
andâ(G) ) θ(G) ) ν(G) whereθ, ν, andη are the number
of positive, negative and zero eigenvalues ofD, respectively;
η is also called the “nullity” and is equal to the number of
NBSs. We may therefore write the total spin as

whereN is the total number of vertices that is equal to the
sum ofθ, ν, andη.

A GNF consists of a bipartite hexagonal lattice, which
has two subsets of sites,A andB, with bonds only between
atoms belonging to different subsets. Each sublattice with a
population ofNA or NB, naturally makes a nonadjacent set,
but in general,NA e R and NB e R. We first focus on a
special case where

We prove that all types of GNFs shown in Figure 1b-g fall
into this category. The proof is recursive and takes the
zigzag-edged triangular GNF shown in Figure 1e (for which
NB > NA holds) as an example. For the GNF withn ) 2,
exhaustive search yields thatR ) NB. We next show that if
R ) NB holds for any integern g 2 then it holds forn + 1.
The graph of sizen + 1 is constructed by starting with the
graphG of sizen and adding to one side of it a line graph
S, for which we must haveR(S) ) n + 2 ) NB(S). But in
general,R(S+ G) e R(S) + R(G), which can be proved by
reductio ad absurdum. Therefore, we haveR(S + G) e
NB(S) + NB(G) ) NB(S + G), where the equal sign applies
because any set ofB vertices are nonadjacent. This completes
the proof. The proofs are similar for the other types of GNFs
shown in Figure 1.

As long as eq 2 holds for a GNF, its nullity can be easily
counted by breaking the GNF apart into subflakes and

stitching them up again, as shown in Figure 1. We define a
stitch as a single path of bonds that merges two subflakes,
which is either even if it contains an even number of atoms
or odd otherwise. Clearly, there are equal numbers ofA and
B sites in an even stitch but one additionalA or B site in an
odd stitch. Therefore, an odd stitch creates or annihilates
exactly one NBS while an even one leaves the total number
of NBSs unchanged according to eqs 1 and 2.

With this counting rule, we can construct GNFs with
nonzero spin by stitching together hexagonal units that by
themselves have zero spin; the simplest example is shown
in Figure 1b, where a minimum GNF with spin 0.5 is
constructed. An extension of this is shown in Figure 1e
where, starting with a zigzag-edged triangular GNF with
n-edge carbon atoms and adding to it an additional layer of
A-B balanced sites (lighter color hexagons), it produces a
zigzag-edged triangular GNF withn + 1 edge carbon atoms.
This introduces one moreB site thanA site into to the system
therefore the total nullity isη ) n - 1, indicating the net
spin scales linearly as the linear size of the GNF. In contrast
to zigzag-edged triangular GNFs, a graphene nanoribbon
regardless of its size and edge type must have zero nullity
because it can always be constructed fromA-B balanced
subflakes with even stitches, as illustrated in Figure 1c,d.
Therefore, the flat band edge states in a GNR are funda-
mentally different form the NBSs of a GNF. The former
asymptotically approach the Fermi level due to size effects,
while the latter is associated with singularities of the hopping
matrix D. It is this difference that eventually leads to the
result that a GNR must have zero net spin, while a GNF
can accommodate a large spin. This point is evident when
looking at the two parallel edges of a zigzag-edged GNR
where the type of sublattice on either side must be different.
In contrast, the orientation of edges in a zigzag-edged
triangular GNF makes it possible that all atoms on the edges
belong to the same sublattice, which breaks the symmetry
between sublattices and gives rise to large spin according to
eqs 1 and 2. Similar to the finite GNRs, the rest of GNF
types from Figure 1 panel f to panel h haveNA ) NB and
thusη ) 0. Clearly, the existence of NBSs in zigzag-edged
triangular GNFs and its absence from the other types of
GNFs stems from the symmetry of the structures with respect
to the two sublattices of graphene. In all shapes but the
zigzag-edged triangular GNFs, it is possible to transformA
sites toB sites by a point group operation.

To justify these arguments beyond the level of graph
theory, we use first-principles electronic structure calculations
within density functional theory (DFT). We employ the
SIESTA15-17 code with all GNFs relaxed by optimizing the
bond lengths until the force on each atom is smaller in
magnitude than 0.04 eV/Å. During the optimization, the
electronic ground state is solved self-consistently by using
norm-conserving pseudopotentials to represent the atomic
cores and a double-ú plus polarization basis of localized
orbitals with an energy cutoff of 70 Ry. For the exchange-
correlation functional, we use the local density approximation
(LDA) and the spin-polarized (LSDA) version where ap-
propriate. Within the nonspin-polarized LDA, the NBSs are

S) η/2 ) (R - â)/2 ) R - N/2 (1)

R(G) ) max{NA(G), NB(G)} (2)
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still present after taking into account structural relaxation
and all the interactions beyond the nearest neighbors (which
are automatically taken into account in the DFT calculations),
consistent with previous calculations18 within the TBA. This
is not surprising because the homogeneous hopping matrix
is not a necessary condition for the matrix to be singular.
Rather, it is the topology constraint that gives rise to the
NBSs. These NBSs are half filled and behave like the outer
shell of a ferromagnetic atom, which is not stable when spin
is taken into account. The exchange interaction requires the
spin in these orbitals to be maximized, similar to Hund’s
rule for atoms. As an example, the LSDA calculation of the
structure in Figure 2 shows that the degenerate NBSs split
and create an energy gap of 0.40 eV and a total spin of 2.
The energy difference between spin-polarized and spin-
unpolarized ground states is 0.48 eV and in favor of the
polarized state.

With the NBSs split into two spin states, the SOMOs with
majority spin (assigned as spin up) are localized exclusively
on the majority subset of sites (Figure 2b, right inset). The
asymmetry in the spin of these orbitals lifts the degeneracy
on the remaining orbitals (Figure 2a). Meanwhile, due to
the asymmetry in spatial distribution, the remaining spin-up
orbitals are attracted to the majority subset of the sites by
the exchange interaction while the spin-down orbitals are
repelled from the majority subset and attracted to the minority
subset of the sites (Figure 2b, left inset). The whole system
thus develops a ferrimagnetic order with opposite spins on
the two subsets of the sites and with the total spin-up larger
than the total spin-down by a net amount equal to (n - 1)/
2. This value scales with the linear size of the GNF as
predicted by graph theory.

For zigzag-edged triangular GNFs of nanometer size, the
split of the NBSs creates an energy gap of 0.3-0.5 eV at
the Fermi level, as shown in Figure 3. Therefore the spin

alignment should be stable at room temperature, consistent
with theoretical results on high-temperature magnetism of
sp electrons.19 When the linear size of the triangular graphene
flake increases beyond the nanometer scale, the minimum
energy gap between the SOMOs and the lowest unoccupied
molecular orbital decreases and approaches zero, which
corresponds to the properties at the Dirac point in extended
2D graphene. However, the maximum energy gap, as defined
in Figure 3, remains∼0.5 eV, and therefore it should be
possible to measure the magnetic moment at the edge of the
triangular graphene flake even beyond the nanoscale at room
temperature. It is well known that graphene is subject to
weaker spin-orbit coupling and hyperfine interactions than
semiconductors, which lead to increased coherence time of
the spin states.20 This property, together with the scalability
of total spin and its stability up to room temperature, renders
the artificial ferrimagnetic atom made from graphene an
excellent candidate for spintronic devices such as spin
memory, transistors, and perhaps solid-state qubits.

From a chemical point of view, these hydrogen-terminated
graphene triangles can be called colossal hydrocarbon
radicals except that the former are not as reactive because
in a conjugatedπ-system the delocalization of the unpaired
spin orbital substantially lowers its energy. The enhanced
stability of such systems has been noted in previous
theoretical studies on small model graphene systems21 and
the zigzag edges of GNRs.22 Synthesis of stable polymer
radicals with large spin has been a long standing goal in
chemistry and some successful experiments have produced
π-conjugated polymers with molecular spin as high asS )
5000.23

However, with chemical synthesis being a traditional
bottom-up approach this way of obtaining large-spin mol-
ecules is limited by the complex reaction pathways available.
Meanwhile, the harsh reaction conditions and the interactions
between the radicals may easily destroy the spin properties,
for instance, through oligomerization. In contrast, a GNF with

Figure 2. Zigzag-edged triangular graphene flakes with ferrimag-
netic order and linearly scaling net spin. (a) Density and filling of
the spin-polarized states: blue and red correspond to up (u) and
down (d) spin. (b) Spatial distribution of the spin density difference
[Fu(r) - Fd(r)]/2 over the artificial atom, which is the sum of the
spin density shown in the two smaller insets. Right inset: spin
density of the SOMOs. Left inset: spin density of all other occu-
pied orbitals. Spin density contours are shown at the value of
0.0025/Å3.

Figure 3. Scaling of spin and energy gap with the inverse linear
size (1/n) of zigzag-edged triangular graphene flakes.∆max and∆min

are the maximum and minimum energy gaps from the SOMOs to
the lowest unoccupied molecular orbital, as shown in the inset;
dotted lines are guides to the eye.
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large spin can in principle be carved from graphene through
lithography, which provides an alternative top-down ap-
proach that avoids these complications. Our preceding
analysis indicates that the highest reported spin in conjugated
polymers may be easily exceeded in a graphene flake of
submicron size. Although defects may reduce the net spin,
it is clear from eq 1 that the nullity of the system is not
reduced by defects in any dramatic way, that is, the total
spin is not sensitive to defects as long as they are not so
abundant that the entire edges of the flake become irregular.

It is important to note that the large spin demonstrated in
zigzag-edged triangular GNFs is only a special case of eq
2, which in turn is a special case of eq 1 where the number
of maximum nonadjacent sites is not necessarily equal to
NA or NB. In the latter case, large spin states may be generated
much more efficiently. One such example shown in Figure
4 is based on the “Star of David” shape. The structure is
fractal and generated by repeatedly overlapping two triangles
in opposite direction and removing the overlap portion. The
structure has a fractal dimension log(1/6)/log(1/3)) 1.62,
the logarithm ratio of the number-of-atoms fraction and
linear-size fraction between successive self-similar levels.
The total spin increases exponentially with the fractal level
q asSq ) S02q, whereS0 is the spin of the initial graphene
triangle. The increase of total spin is due to the increase of
boundary length, a hallmark of fractal structures, which here

increases the possibility of topological frustration of the
π-bonds. The set of maximum nonadjacent atoms consists
of bothA andB sublattices, switching sublattice index from
one region to the next, as shown in the inset of Figure 4a.
Therefore, although there is an equal number ofA and B
atoms,R is much greater than the half population of the total
atoms, resulting in a nullity and spin that is proportional to
the total number of the star branches.

Another example of topological frustration that may be
of practical interest is shown in Figure 5. It consists of a
combination of zigzag-edged triangular GNF with a conduct-
ing zigzag-edged GNR that might serve as an electronic or
spintronic circuit component. TBA calculations show that
the net spin density due to the introduction of the GNF
protrusion, not including the antiparallel coupled spin of the
finite-GNR edge states, is localized on the GNF protrusion
with a small spread on the other side of the ribbon, making
it an interesting candidate of a spin memory or spin filter
device. Circuits made of such components in principle can
be carved out of a single graphene layer through a unified
planner process using electron-beam or scan probe micros-
copy lithography.

In conclusion, we have characterized the spin properties
of arbitrarily shaped graphene nanoflakes. We showed that
linear-scaling spin arises in zigzag-edged triangular graphene
nanoflakes through topological frustration. This principle
further suggests a multitude of ways of carving patterns out
of a graphene plane (such as dots, stripes, and circuits) with
desired spin distribution. These results open the door to
spintronic nanoscale devices by sculpting graphene fragments
and exploiting the shape dependence of magnetic properties.

Note added in proof. After completion of the present work,
we became aware of recent related works by J. Fernndez-
Rossier et al.,24 O. Hod et al.,25 and M. Ezawa26 on the spin
properties of triangular, hexagonal, and ribbonlike finite
graphene fragments. The results reported in these works are
consistent with our eq 2, which is a special case of the general
principle expressed by our eq 1.

References

(1) Makarova, T. L.Semiconductors2004, 38 (6), 615-638.
(2) Geim, A. K.; Novoselov, K. S.Nat. Mater.2007, 6 (3), 183-191.
(3) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang,

Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A.Science2004,
306 (5696), 666-669.

(4) Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.;
Booth, T. J.; Roth, S.Nature2007, 446 (7131), 60-63.

(5) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson,
M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A.Nature2005,
438 (7065), 197-200.

(6) Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer,
H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A.
K. Science2007, 315 (5817), 1379-1379.

Figure 4. Fractal structure of a “Star of David” graphene nanoflake
in which the spin increases with the fractal level. (a) The fractal
GNF and the distribution of the spin density in one of the subunits
from TBA calculations. Each region is marked withA or B,
indicating the switch of sublattice where the majority spin resides.
(b) Spin density difference [Fu(r) - Fd(r)]/2 (blue ) positive, red
) negative) over a single subunit of the structure in (a) from first-
principles calculations of the relaxed structure. The calculated total
spin is 2.35 instead of the value 3.0 expected from TBA calcula-
tions. Spin density contours are shown at the value of 0.0025 /Å3.

Figure 5. An example of a GNF attached to a GNR, forming a
possible spintronic component. The net spin density distribution
shown in color is projected from the nonbonding states obtained
from TBA calculations on the finite GNR model system shown
(see text for details).

244 Nano Lett., Vol. 8, No. 1, 2008



(7) Son, Y. W.; Cohen, M. L.; Louie, S. G.Nature2006, 444 (7117),
347-349.

(8) Fujita, M.; Wakabayashi, K.; Nakada, K.; Kusakabe, K.J. Phys. Soc.
Jpn.1996, 65 (7), 1920-1923.

(9) Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S.Phys.
ReV. B 1996, 54, 17954.

(10) Owens, F. J.Mol. Phys.2006, 104 (19), 3107-3109.
(11) Son, Y. W.; Cohen, M. L.; Louie, S. G.Phys. ReV. Lett. 2006, 97

(21), 216803.
(12) Hod, O.; Barone, V.; Peralta, J. E.; Scuseria, G. E.Nano Lett.2007,

7 (8), 2295-2299.
(13) Gutman, I.; Brunvoll, J.AdVances in the theory of benzenoid

hydrocarbons II; Springer-Verlag: Berlin, 1992; p 226.
(14) Fajtlowicz, S.; John, P. E.; Sachs, H.Croat. Chem. Acta2005, 78

(2), 195-201.
(15) Ordejon, P.Phys. Status Solidi B2000, 217 (1), 335-356.
(16) Artacho, E.; Sanchez-Portal, D.; Ordejon, P.; Garcia, A.; Soler, J.

M. Phys. Status Solidi B1999, 215 (1), 809-817.
(17) SanchezPortal, D.; Artacho, E.; Soler, J. M.J. Phys.: Condens. Matter

1996, 8 (21), 3859-3880.

(18) Yamamoto, T.; Noguchi, T.; Watanabe, K.Phys. ReV. B 2006, 74
(12), 121409.

(19) Edwards, D. M.; Katsnelson, M. I.J. Phys.: Condens. Matter2006,
18 (31), 7209-7225.

(20) Trauzettel, B.; Bulaev, D. V.; Loss, D.; Burkard, G.Nat. Phys.2007,
3 (3), 192-196.

(21) Peralta-Inga, Z.; Murray, J. S.; Grice, M. E.; Boyd, S.; O’Connor,
C. J.; Politzer, P.J. Mol. Struct.2001, 549, 147-158.

(22) Jiang, D. E.; Sumpter, B. G.; Dai, S.J. Chem. Phys.2007, 126(13),
124701.

(23) Rajca, A.; Wongsriratanakul, J.; Rajca, S.Science2001, 294(5546),
1503-1505.

(24) Fernndez-Rossier, J.; Palacios, J. J.Phys. ReV. Lett.2007, 99, 177204.
(25) Hod, O.; Barone, V.; Scuseria, G. E. arXiv.org, 0709.0938v2 2007;

http://arxiv.org/ (accessed November 1, 2007).
(26) Ezawa, M. arXiv.org, 0709.2066v1 2007 and 0707. 0349v1 2007;

http://arxiv.org/ (accessed November 1, 2007).

NL072548A

Nano Lett., Vol. 8, No. 1, 2008 245


