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Hydrophobicity of macroscopic planar surface is conventionally char-
acterized by the contact angle of water droplets. However, this
engineering measurement cannot be directly extended to surfaces of
proteins, due to the nanometer scale of amino acids and inherent
nonplanar structures. To measure the hydrophobicity of side chains of
proteins quantitatively, numerous parameters were developed to
characterize behavior of hydrophobic solvation. However, consistency
among these parameters is not always apparent. Herein, we demon-
strate an alternative way of characterizing hydrophobicity of amino
acid side chains in a protein environment by constructing a monolayer
of amino acids (i.e., artificial planar peptide network) according to the
primary and the β-sheet secondary structures of protein so that the
conventional engineering measurement of the contact angle of a wa-
ter droplet can be brought to bear. Using molecular dynamics simula-
tions, contact angles θ of a water nanodroplet on the planar peptide
network, together with excess chemical potentials of purely repulsive
methane-sized Weeks−Chandler−Andersen solute, are computed. All
of the 20 types of amino acids and the corresponding planar peptide
networks are studied. Expectedly, all of the planar peptide networks
with nonpolar amino acids are hydrophobic due to θ > 90°, whereas
all of the planar peptide networks of the polar and charged amino
acids are hydrophilic due to θ < 90°. Planar peptide networks of the
charged amino acids exhibit complete-wetting behavior due to θ = 0°.
This computational approach for characterization of hydrophobicity
can be extended to artificial planar networks of other soft matter.
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Hydrophobic effect on the microscopic level can be understood
via analysis of unfavorable ordering of water molecules around

nonpolar solutes, where dynamic hydrogen bonds among water
molecules nearby can be disrupted (1). The hydrophobic interaction
is well known as one of the major driving forces for protein folding,
and is also a key factor to stabilize the globular or binding structures
of single protein, multiprotein, and protein−ligand systems (2–5).
According to previous studies, the hydrophobicity of proteins can be
attributed mainly to the side chains of amino acid residues, which
are the structural units of protein backbones (5–7). Hence, quan-
titative characterization of the hydrophobicity of amino acids in
protein environment is crucial to our understanding of the protein
functionalities in biological environment and also to the prediction
of synthetic peptide structures.
Over the past three decades, extensive studies have been devoted

to understanding hydrophobic interaction and hydrophobic hydra-
tion on the molecular levels (8–37). However, the quantitative de-
scription of the hydrophobicity of protein and amino acid residues
still largely hinges on molecular thermodynamic properties of the
residues rather the structural properties of the protein polymer itself.
In engineering fields, the hydrophobicity of a macroscopic planar
surface is usually characterized by measuring the contact angle (CA)

of water droplets on the surface. This conventional method is not
feasible for proteins, however, due to its high curvature and nano-
scale size (38–40). Because of this experimental limitation, instead
of measuring CA, researchers have developed other indirect
methods to characterize relative hydrophobicity of amino acid
residues. One of widely used methods is based on a partition of
amino acids in two immiscible liquid phases (8–16). Using eth-
anol and dioxane as the organic solvents to model the protein
interior, Nozaki and Tanford (8) proposed a scale for quantita-
tive description of the hydrophobicity of amino acids. It turns out
that other phases, such as micellar and vapor phases, can be also
coupled with the partition method to avoid possible inaccurate
account of cavity formation energy in organic solvents (41, 42).
Radzicka and Wolfenden (13) analyzed vapor−liquid free energy
data and identified a correlation between hydration potential of
amino acid and its accessible surface area in known protein
structures. Baldwin (43) found that the hydrophobic free energy
computed based on the vapor−liquid transfer is significantly re-
duced, but is still a dominant factor in protein folding. One issue
with the partitioning method is that neither the organic solvent nor
the vapor phase can precisely mimic the protein interior that
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typically entails hydrogen-bonding and dispersive interactions.
Furthermore, the parameters attained from the partitioning method
exhibit strong dependence on specific interactions among amino
acids (or their derivatives), as well as the organic solvents used.
Note also that hydrophobicity of proteins can be characterized by

computing accessible and buried surface areas of amino acids in
known protein structures using statistical mechanics methods (44–48).
However, the parameters obtained from the partitioning and statistical
mechanics methods tend to be loosely correlated and may not be
easily transferable from system to system. In some cases, the numerical
values obtained for characterization of the hydrophobicity of certain
amino acids are controversial. For example, the side chain of tyrosine
has been identified as hydrophobic in some studies (18, 20, 21, 25) but
hydrophilic in others (28, 29). Similar inconsistency was also seen for
tryptophane (18, 20, 23, 25–27, 30, 31). Many studies only considered
hydrophobicity of side chain analogs without considering conforma-
tion of the peptide backbone, which can also affect degrees of hy-
drophobicity of protein surface. Besides the primary structure, the
secondary structure of proteins can also influence the hydrophobicity.
For instance, Gromiha and Selvaraj (49) used hydrophobic charac-
teristics to predict the secondary structures of proteins.
Atomistic molecular dynamics (MD) simulation has also been

used to characterize hydrophobicity of protein, for which both side
chain of amino acid residues and local configuration of peptide are
considered. Important results on microscopic description of hy-
drophobicity of nanoscale surfaces have been obtained. For exam-
ple, Garde and coworkers (39) computed density fluctuation of
water at protein surface region to map out local hydrophobicity.
Hajari and van der Vegt (16) computed molecular conditional
solvation free energies to determine hydrophobicity of amino acid
residues. These characterizations of hydrophobicity on the micro-
scopic scales bring important insights into hydrophobic interaction
and hydrophobic hydration but are not tightly correlated with the
CA measurement that is widely used to characterize degrees of
hydrophobicity (or wettability) of surfaces in engineering fields.
An important question is whether one can build a bridge that

connects the hydrophobicity of amino acids in a protein environ-
ment and the CA measurement of surface wettability. To address
the question, we developed an artificial planar surface of proteins to
be in contact with a water nanodroplet. Note that a natural planar
structure of protein is one of its secondary structures, namely, the
β-pleated sheet, consisting of peptide strands connected laterally
by backbone hydrogen bonds between N−H groups and C=O
groups of adjacent strands, which generally forms a twisted and
pleated sheet. The tiny twisted fragment of the β-sheet in natural
protein is unfeasible for the CA measurement using the conven-
tional method; however, it suggests to us another way to build a
planar surface with the secondary structure of protein. Indeed,
several recent experiments have shown evidence of 2D crystal of
self-assembled protein-like peptoid polymers, held by electrostatics
and dispersive interactions (50–54). Such a 2D protein-like sheet

can mimic both the structure and functionality of protein, as well as
provide a large-area planar surface for the CA measurement.
Following the secondary structures of proteins, particularly the

patterns of hydrogen bonds between the main-chain peptide
groups, we build 2D analogous networks with planar surface of
specific amino acid side chains. We then use MD simulations to
compute values of CA to characterize the hydrophobicity of amino
acid side chains, with incorporating effects of both primary and
secondary structures of protein backbones (see Methods). As an-
other thermodynamic measure of the hydrophobicity and super-
hydrophilicity of the network surfaces, the excess chemical potential
of a purely repulsive methane-sized Weeks−Chandler−Andersen
(WCA) solute for all of the 20 types of amino acids is computed
(55). With the computational data, we propose another hydropho-
bicity scale, for various amino acids in protein environment, that can
be related to the CA measurement for characterizing wettability
of surfaces.

Results and Discussion
Two-Dimensional Planar Peptide Networks. Both the primary and
secondary structures are taken into account to construct the arti-
ficial 2D planar peptide networks. First, a polypeptide chain is built
by conjoining amino acids of the same type, where amino acids are
linked by peptide bonds. Next, based on the secondary structure
of protein, the artificial polypeptide chains are linked together
via hydrogen bonds, forming a 2D network. Meanwhile, all of the
R-side chains of amino acids are uniformly located on one side of
the surface of the artificial 2D network, as shown in Fig. 1A.
Considering that there are two types of β-folding peptides,

namely, parallel and antiparallel β-sheets, in which the adjacent
peptide chains are packed along the same or opposite orienta-
tion, we build both types of 2D networks for the MD simulations.
The optimized structures of parallel and antiparallel 2D peptide
networks with the Ala side chains are displayed in Fig. 2 A–C and
D–F, respectively. As shown in Fig. 2, under the periodic
boundary condition, both parallel and antiparallel 2D peptide
networks exhibit atomically flat surface in the supercell, sug-
gesting that the CA of a water droplet can be measured and
analyzed on basis of Young’s equation. Note that the N−H∙∙∙O
hydrogen bonds in the antiparallel network are closer to linear
configuration, indicating that the antiparallel β-sheets are ener-
getically more stable than the parallel counterparts. With the Ala
side chain, both network structures give nearly the same CA (θ =
118° for antiparallel β-sheets, and θ = 119° for parallel β-sheets)
in the MD simulations (Fig. S1). Therefore, hereafter, we only
focus on the hydrophobicity of antiparallel β-folding networks.

Fig. 1. (A) A schematic structure of artificial β-folding 2D peptide network
composed of unified R-side chains, constructed considering both the primary
and secondary structure of protein. (B) A side view of the MD simulation
system and the definition of CA θ of a water nanodroplet.

Fig. 2. Two side views and a top view of 2D peptide network, constructed
by (A–C) parallel or (D–F) antiparallel β-sheet with the Alanine side chains
along x (A and D), z (B and E), and y (C and F) direction. Both network
structures are optimized using the DFT method.
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Note also that the angles of N−H∙∙∙O hydrogen bonds in the
antiparallel β-folding network are slightly titled to 160°, rather
than the strictly linear structure, due to the dispersive interac-
tions between adjacent peptide chains.
Likewise, the 2D peptide networks of the other 19 types of

amino acids are optimized using density-functional theory (DFT)
methods (Figs. S2–S4). Table 1 lists the density of R group in the
2D peptide networks. The densities of the 20 types of R groups
follow the sequence Thr < Trp < Pro < Ile < Val < Phe < Tyr <
Leu < His < Arg < Glu < Lys < Gln < Met < Ser < Asp < Ala <
Cys < Gly < Asn, which is strongly dependent on the R-group
size. Nevertheless, the difference in the R-group density among
the 20 types of peptide networks is merely ∼7%. Such small
differences are attributed to the strong N−H∙∙∙O hydrogen
bonds and covalent peptide bonds, implying that the hydropho-
bicity of the 20 peptide networks is due mainly to the chemical
properties of the amino acid residue.

CA Measurement. Based on the shape of an equilibrated sessile
water nanodroplet on the 2D peptide networks from MD simu-
lations, the CA (θ), defined as the averaged angle between the
surface of the network and the tangential line of the nanodroplet
[originated from the droplet−network interface (Fig. 1B)], is
computed using a similar method to that reported previously (56).
More specifically, the isochore line is traced as the liquid−vapor
interface, at which the time-average density is half of the bulk
density of water. Next, the CA can be measured by fitting the
isochore line to a circle. As listed in Table 2, we compute CAs of
water nanodroplets on various β-sheet networks where the cor-
responding amino acid side chains are divided into three groups:
(i) nonpolar (Ile, Ala, Phe, Leu, Met, Pro, Val, Trp), (ii) polar
(Cys, Gly, Thr, Ser, Tyr, Gln, Asn), and (iii) charged (His, Lys,
Glu, Arg, Asp) side chains.
Snapshots of the water nanodroplet on antiparallel β-sheets

with nonpolar amino acid side chains are shown in Fig. 3A. For
better visualization, one of 20 MD trajectories for the water
nanodroplet on a peptide network surface at 300 K is shown in
Movie S1. Here, the 2D peptide networks with the nonpolar
amino acid side chains exhibit hydrophobic behavior [θ > 90°
(Table 2)]. The difference in θ among the nonpolar amino acid
side chains is very small (Δθ < 16°). In particular, CAs of the

water nanodroplet on the β-sheets with Pro, Leu, Met, Pro, Val,
or Trp side chains are nearly the same, i.e., θ ≈ 110°.
The CAs of water nanodroplets on peptide networks with polar

amino acid side chains, i.e., Cys, Gly, Thr, Ser, Tyr, Gln, or Asn,
are shown in Fig. 3B and Table 2. All networks with polar amino
acid side chains exhibit hydrophilicity (θ < 90°). Moreover, the
CAs show big differences, with Δθ ranging from 0° to 85.4°. Be-
cause the peptide networks with Tyr, Gln, or Asn side chains ex-
hibit complete-wetting behavior (θ = 0), these networks can be
viewed as superhydrophilic. In cases of amino acids possessing
ionic groups on side chains, sodium or chloride ions can be added
to neutralize the system. All of the Lennard-Jones parameters and
atomic net charges are still taken from Amber force field. All
peptide networks with the charged amino acid side chains show
complete-wetting behavior (θ = 0°).

Excess Chemical Potentials. For the network surfaces with θ = 0,
measurement of the hydrophobicity requires a different scale.
We also computed the excess chemical potentials ðΔμexbulkÞ of the
purely repulsive methane-sized WCA solute (σ = 0.345 nm, « =
0.896 kJ/mol), with respect to that in the bulk (Figs. S5 and S6),
as an alternative thermodynamic indicator of hydrophobicity. A
minimum value in Δμexbulk is clearly observed near the surface for
all nonpolar amino acid side chains (Fig. S5). We move all of the
curves such that their minimums are all located at z* = 0. The
depths of the minimum Δμexint for the eight nonpolar amino acid
side chains are shown in Table 2.
Previous studies show that formation of a cavity is more favorable

near the solute/water interface than in the bulk (57–59). Because of
its relation with the cavity formation probability, the excess chem-
ical potential of a hard-sphere solute can be used as a microscopic
measure of the hydrophobicity of the solute−water interface (38,
39). Our MD simulation indicates that the methane-sized WCA
solute’s chemical potential in bulk water, μexbulk, is about 32.2 kJ/mol.
Figs. S5 and S6 show the excess chemical potential of the methane-
sized WCA solute along the direction normal to the β-sheet net-
work, with respect to that in the bulk, where a minimum is seen at

Table 1. Computed density of R group in optimized 2D peptide
network, each constructed by one of 20 types of amino acids

Acid type Amino acid Density, nm−2

Nonpolar Ile 4.83
Ala 5.77
Phe 4.96
Leu 5.11
Met 5.63
Pro 4.80
Val 4.95
Trp 4.67

Polar Cys 5.79
Gly 5.88
Thr 4.37
Ser 5.72
Tyr 5.02
Gln 5.58
Asn 5.88

Charged His 5.35
Lys 5.49
Glu 5.49
Arg 5.36
Asp 5.73

Table 2. Computed CAs of a water nanodroplet on the artificial
β-sheets with various amino acid side chains, and excess chemical
potential of purely repulsive WCA solutes at the 2D peptide
network−nanodroplet interfaces with respect to their chemical
potential in bulk water

Acid type Amino acids θ, deg cos θ Δμexint, kJ/mol

Nonpolar Ile 121.8 ± 0.3 −0.528 −9.73
Ala 119.7 ± 0.7 −0.495 −9.58
Phe 111.7 ± 0.6 −0.370 −9.23
Leu 110.0 ± 0.4 −0.342 −8.66
Met 108.9 ± 0.3 −0.324 −7.65
Pro 108.8 ± 0.5 −0.322 −7.55
Val 107.9 ± 0.2 −0.308 −8.26
Trp 105.7 ± 0.6 −0.270 −8.62

Polar Cys 85.4 ± 0.1 0.081 −5.63
Gly 67.3 ± 0.5 0.386 −4.57
Thr 31.5 ± 2.3 0.853 −4.06
Ser 20.6 ± 1.7 0.936 −3.56
Tyr ∼0 1.677* −0.05
Gln ∼0 2.176* 2.02
Asn ∼0 2.354* 2.76

Charged His ∼0 2.029* 1.41
Lys ∼0 2.101* 1.71
Glu ∼0 3.173* 6.16
Arg ∼0 4.383* 11.18
Asp ∼0 9.573* 32.72

*Cosine values of the CA are calculated based on Eq. 1.
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the network−water interface for nonpolar amino acid side chains.
Fig. 4 shows the excess chemical potential of the probe solute at the
network−water interface, defined by the depth of the minimum,
Δμexint, as a function of cos θ. According to previous studies, Δμexint
exhibits a linear dependence on cos θ (38, 39). The solid line in Fig.
4 represents a linear fit to all data points (with θ > 0) using the least
square algorithm. The fitted straight line can be given by

Δμexint = 4.15 cos θ− 7.01. [1]

To quantify the hydrophobicity of amino acid side chains with
θ = 0, the extrapolated values of cos θ are calculated according to
Eq. 1 with Δμexint being the input (see * in Table 2). For the three
polar amino acid side chains with θ = 0, we found that the hy-
drophobicity decreases in the sequence of Tyr < Gln < Asn. For
the five charged amino acid side chains with θ = 0, the hydro-
philicity decreases in the sequence of His < Lys < Glu < Arg <
Asp. It is worth mentioning that the excess chemical potential
shows greater difference for charged amino acid side chains than
for polar amino acid side chains, ranging from 1.41 kJ/mol to
32.72 kJ/mol. Also, only His and Lys are apparently more hy-
drophobic than the two most hydrophilic polar amino acids, Gln
and Asn (Table 2).

Comparison with Other Hydrophobicity Scales. To validate the
computational measurement of wettability of amino acid side
chains on the basis of the artificial planar peptide networks, we
compare the hydrophobicity data obtained from our simulations
to previously reported hydrophobicity scales of amino acid resi-
dues, which include the experimental free energies of transfer
relative to glycine (13) (Fig. 5A), computed free energies based
on accessible surface areas (30) (Fig. 5B), conditional solvation
free energies based on empirical force-field model (18) (Fig. 5C),
and calculated hydrophobic moments based on solvation ener-
gies (29) (Fig. 5D). For the hydrophilic amino acids (θ < 90°), we
found that the previously reported hydrophobicity scales show
more or less linear correlation with cos θ values obtained from
our simulations, including the experimental free energies of trans-
fer (Fig. 5A).
However, such a similarity in trends becomes nonapparent for

nonpolar side chains (black squares in Fig. 5) due largely to small
hydration energy for nonpolar side chains. From our simulations,
all of the eight nonpolar side chains show hydrophobic behavior

(θ > 90°; Table 2). Specifically, the difference in θ among the
nonpolar amino acid side chains is small (Δθ < 16°). In particular,
the θ values for Val, Leu, Met, Pro, and Trp side chains are almost
the same (about 110°). Hence, our simulations suggest that the
amino acid residues with nonpolar side chains entail nearly the
same hydrophobicity. Note that certain inconsistencies between
surface accessibility of each amino acid and its hydrophobicity
have also been reported previously (60). For example, no linear
correlation between the conditional solvation free energy and the
buried area of individual side chains upon folding for nonpolar
amino acids is seen (18).

Conclusion
In conclusion, based on the structures of β-sheet, artificial 2D
planar peptide networks are constructed with the unified amino
acid side chains. Using MD simulations, we examined the hy-
drophobicity of 20 types of amino acids by measuring the CA of
a water nanodroplet on the corresponding planar peptide net-
works. Our simulations show that all nonpolar amino acid side
chains are hydrophobic (θ> 90°), even though their peptide
backbones are highly charged. The difference in θ among the
nonpolar amino acid side chains is very small. For the polar
amino acid side chains, the θ values show bigger differences. For
the charged amino acid side chains, their peptide networks dis-
play complete-wetting behavior (θ= 0°). To further characterize
the hydrophobicity of the polar and charged amino acid side
chains that display complete-wetting behavior, excess chemical
potential of purely repulsive WCA solute at the network−water
interface, with respect to the chemical potential in bulk water,
Δμexint, is computed. Based on a linear fit between Δμexint and cos θ,
artificial cosθ values are obtained to characterize the hydro-
phobicity of polar and charged amino acid side chains. These
numerical results offer a different hydrophobicity scale for var-
ious amino acids in protein environment, which can be also re-
lated to the CA measurement for characterizing wettability of
surfaces. Our simulations offer a bridge connecting thermody-
namic hydrophobic data of amino acid residues and macroscopic
wettability measurement used in chemical engineering fields.

Methods
Unit Cell Structure of 2D Protein. The unit cell structure of 2D planar peptide
networks is optimized using the first-principle method within the framework

Fig. 4. Excess chemical potential of purely repulsive WCA solute at the
network−water interface, with respect to the corresponding chemical po-
tential in bulk water ðΔμexintÞ, versus the cosine value of the CA (cos  θ).

Fig. 3. Snapshots of a water nanodroplet on antiparallel β-sheet (A) with
nonpolar amino acid side chains or (B) with polar amino acid side chains,
near the end of MD simulation.
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of DFT implemented in Vienna Ab initio Simulation Package (61). The gen-
eralized gradient approximation in the form of Perdew−Burke−Ernzerh is
used, combined with the projector-augmented wave pseudopotential and
the plane−wave basis set with a cutoff energy of 500 eV. The intermolecular
dispersion interaction is taken into account by choosing a van der Waals
density functional method (62). A sufficiently large vacuum space (> 15 Å) in
the surface normal (z) direction is adopted so that the interaction between
the periodic images can be neglected. The Brillouin zone is sampled with a
3 × 3 × 1 Monkhorst−Pack k mesh. During the geometry optimization, the
carbon atoms in the backbone are fixed in the surface normal (z) direction
while other atoms are allowed to relax in all directions until the force on
each atom is less than 10−4   eV=Å, to ensure accurate convergence.

CA Measurement. After geometric optimization, a cuboid box of 3,009 water
molecules is placed 3 Å above the surface of the 2D peptide network con-
taining 34 polypeptide chains, each having 43 amino acids. A supercell (20.0 ×
20.0 × 20.0 nm3) with the periodic boundary conditions along in-plane
directions (x and y directions) is selected for the systems. Again, to keep the
planar surface of the 2D peptide network, the carbon and nitrogen atoms in
backbone are fixed while other atoms are allowed to relax during the MD
simulations. The rigid extended simple point charge potential model (63) is
selected for water, and the Amber force fields are used for amino acids. The

electrostatic interactions are computed using the particle mesh Ewald algo-
rithm (64). The leapfrog Verlet integration algorithm is applied. All MD
simulations are performed, using the Gromacs 4.4.5 package (65), in the ca-
nonical ensemble with the temperature controlled at 300 K. The MD simu-
lation time is 7 ns (with a time step of 2 fs) for each peptide network. Data
collected in the final 1 ns are used for analysis (66–70).

Excess Chemical Potential. For these simulations, each planar peptide network
(Fig. S7) includes eight polypeptide chains, each having 12 amino acids, and
the periodic boundary conditions are applied along the in-plane directions
(x and y directions); 1,599 water molecules are included in the periodic box.
The excess chemical potential of a methane-sized WCA solute (with the size
parameter of σ = 0.373 nm) is computed using the Widom particle insertion
method (71–73).
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