
Thin Solid Films 414(2002) 136–142

0040-6090/02/$ - see front matter� 2002 Elsevier Science B.V. All rights reserved.
PII: S0040-6090Ž02.00455-8

Exactly solvable model for metal–insulator–metal stepped boundary
tunnel junctions

Q.Q. Shu *, Y. Jiang , S. Meng , G. Lin , W.G. Maa, b b b b

Department of Materials Science and Technology, School of Science, Shenzhen University, Shenzhen 518060, PR Chinaa

Department of Modern Physics, University of Science and Technology of China, Hefei 230026, PR Chinab

Received 3 December 2001; received in revised form 11 April 2002; accepted 12 April 2002

Abstract

An exactly solvable model, which treats the effective barrier potential of the biased metal–insulator–metal tunnel junctions as
a trapezoidal potential with anideal stepped boundary, is presented. Thus, the exact analytic expressions for the electron wave
functions and the tunneling probabilities were obtained by solving Schrodinger’s equation strictly. It is found that if the¨
longitudinal kinetic energy of the electron,E , is greater than the shorter side of the trapezoidal potential, in the barrier regionx

Schrodinger’s equation has to be solved in the two subregions: whereE is lower and higher than the barrier height, respectively.x¨
In order to compare the ideal stepped boundary model to Brinkman’s two approximation models(J. Appl. Phys. 89(1970)
1915), the graded diffuse boundary and perfectly sharp boundary model, the trapezoidal barrier parameters were determined by
fitting the calculatedI–V curves to the experimental ones at 77 K. The results show that for three types of junctions(with Au,
Ag, and Cu top electrodes), the variations in barrier parameters with the metal electrodes are in agreement with each other.
� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Electron transport in metal–insulator–metal(MIM )
tunnel junctions is one of the most important tunneling
phenomena. The reason for this is that MIM tunnel
junctions have been well modeled in studying the
electron tunneling through a barrier experimentally and
theoretically, and that have been applied in many aspects
w1,2x. Recently, due to progress in the investigation of
giant magnetoresistance(GMR), the research interests
in spin-polarized tunneling magnetoresistance(TMR) of
the ferromagnetic MIM tunnel junctions have been
increasing rapidlyw3,4x. The advantage in research on
TMR is that it can be observed at room temperature
even without a strong external magnetic field, thus it is
a promising GMR device. A key problem in the char-
acterization of the MIM tunnel junctions is to determine
their I–V characteristics and so far many studies on the
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calculation of theI–V characteristics have been per-
formed w3,4x. Of them, an important work, which was
done by Brinkman et al., was to calculate the tunneling
conductance of trapezoidal barrier potentials using two
extreme models: thegraded diffuse boundary model and
the perfectly sharp boundary model w5x. For the graded
diffuse boundary model, the tunneling probability was
calculated by using the WKB approximation. For the
perfectly sharp boundary model, the wave functions
were exactly constructed based on the boundary condi-
tions and then the tunneling current is calculated using
Bardeen’s transfer Hamiltonian method. Brinkman’s
work has shown that the inclusion of images does not
radically alter the shape of theI–V characteristics of the
junction. It should be emphasized that for the transfer
Hamiltonian method the tunneling process is treated as
a perturbing operator and then the tunneling matrix
elements are calculated. So the transfer Hamiltonian
method is a perturbation approximation method and it
is effective only for the weak coupling between the
wave functions on the two sides of the barrierw1x. In
this paper, we will present anideal stepped boundary
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Fig. 1. Trapezoidal potential barrier model of metal–insulator–metal
tunnel junctions with(a) zero bias;(b) with a bias positive on the
right-hand metal and the electron energy i.e.E 0(E qf yeV),x fL 2

and (c) with a bias positive on the right-hand metal and thed0ll;
electron energy i.e. The dash–dot linesE -(E qf yeV), d-ll.x fL 2

in (b) and (c) are the barrier potentials with zero bias. Note that for
the case of(b), the electron energyE -U(x) only in region of 0(x

x(ll.

model, which treats theeffective barrier potential of the
biased MIM tunnel junctions as a trapezoidal potential
and the resultant barrier potential is the trapezoidal
potential plus an applied electric potential resulting from
the bias voltage. It means that the applied electric field
is located inside the insulator region of the junction and
the junctions have the ideal stepped boundaries. Thus,
to our knowledge for the first time, the exact analytic
expressions for the electron wave functions and the
tunneling probabilities in the biased MIM tunnel junc-
tions were obtained by solving Schrodinger’s equation¨
strictly, instead of using the WKB approximation or
perturbation approximation method. In order to compare
our model with Brinkman’s graded diffuse boundary
model and perfectly sharp boundary model, three groups
of the barrier parameters were determined by fitting the
calculatedI–V curves to the experimental ones for three
types of junctions(ones with Au, Ag and Cu top
electrodes) at 77 K, respectively. For simplicity, the
image force correction is not included because the effect
of the image forces is only to round off the barrier
corner and to make the average height of the barrier
slightly lower w6x.

2. Ideal stepped boundary model

Consider a MIM junction consisting of two metal
electrodes and separated by a thin barrier insulator layer
(10–20 A). The effective trapezoidal barrier potential˚
of the junction is modeled in one dimension with width
d, as shown in Fig. 1a. As the junction is biased, since
the applied electric field is located in the insulator
region, the resulting barrier potential,U(x), for the
biased junction is the barrier potential plus the applied
electric potential, as shown in Fig. 1b or c. Based on
the free-electron and effective mass approximation, the
tunneling electron wavefunctionsc(x) must satisfy the
Schrodinger’s equation¨

2 2" d
y c(x)qU(x)c(x)sE c(x) (1)xU 22m dx

where

S0 x-0

T
x

U Ž .U(x)s f qE y f yf qeV , 0(x(d (2)1 fL 1 2 d

T
VyeV x)d

m* is the tunneling electron effective mass;E is thex

longitudinal kinetic energy in thex-axis direction(per-
pendicular to the junction interface). Note that for
tunneling problems, there should beE -E qf . Asx fL 1

seen in Fig. 1a, if the bottom of the conductance band

is taken as the zero point of potential,E andE is thefL fR

Fermi energy of the left and right electrode,f andf1 2

is the trapezoidal barrier height on the left and right;
respectively;V is the bias voltage and the electrode on
the right is biased positive.
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In the regionx-0 andx)d, the solutions for Eq.(1)
has, respectively, the form ofc (x) andc (x)1 4

ik yikx x1 1c (x)se qRe , x-0 (3)1

ik x2c (x)sSe , x)d (4)4

whereR and S is the reflection and transmission coef-
ficient, respectively; U 1y2k s(2m E ) y", k s1 x 2

U 1y2w x2m (E qeV) y".x

In the barrier region by introducing0(x(d,

2 1y3w zd"
x |ls (5a)Uy ~Ž .2m f yf qeV1 2

U 2Ž .2m f qE yE l1 fL x
ls (5b)2"

Eq. (1) becomes

2 B Ed c x l
C Fq y cs0 (6)2 3 2dx l lD G

Both l and l are positive,l has a length dimension
andl is dimensionless. Note that because the tunneling
electrons with the differentE face different parts of thex

trapezoidal barrier, in solving Eq.(6) there are two
cases to be considered separately:l0l, i.e. E 0(E qx fL

and l-l, i.e.f yeV) E -(E qf yeV).2 x fL 2

As shown in Fig. 1b, in the case ofd0ll for the
tunneling electron there are the two different subregions
inside the trapezoidal barrier region: (E is0(x-ll x

lower than the barrier potential) and (E isll(x(d x

higher than the barrier potential).
In the barrier subregion (E is lower than0(x-ll x

the barrier potential), introducing the dimensionless
parameter Eq.(6) becomesjsly(xyl),

2d c
qjcs0 (7)2dj

In terms of the transformations and Eq.3y2zs(2y3)j ,
(7) can be rewritten as

2 2w zd w 1 dw (1y3)
x |q y 1q ws0, for 0(x-ll2 2y ~dz z dz z

(8a)

This is a modified Bessel equation, a general solution
of which is

w(x)sC I (z)qC K (z) (8b)1 1y3 2 1y3

where I and K are modified Bessel functions1y3 1y3

w7x.
Similary, in the barriersubregion (E isll(x(d x

higher than the barrier potential), introducing js
Eq. (6) is rewritten as 2 2(xyl)yl, d cydc qjcs0,

which can be transformed, by using and1y2csj w zs
as a Bessel equation of one third order3y2(2y3)j ,

2d w 1 dw
q2dz z dz

2w z(1y3)
x |q 1y ws0, for ll(x(d (9a)2y ~z

a general solution of which is

w(x)sD J (z)qD N (z) (9b)1 1y3 2 1y3

whereJ is Bessel function,N is Neumann function1y3 1y3

w7x.
Thus, for the case ofd0ll, returning to the variable

x in Eq. (8b) and Eq.(9b), we obtained the solutions
of Eq. (6), c andc as follows:2 3

1y2 3y2B E B ES w zx 2 xT

U x |C F C Fc (x)s ly C I lyT2 1 1y3
y ~Vl 3 lD G D G

3y2B E Ww z2 x T

Xx |C FqC K ly , 0(x(ll (10)T2 1y3
y ~Y3 lD G

1y2 3y2B E B ES w zx 2 xT

U x |C F C Fc (x)s yl D J ylT3 1 1y3
y ~Vl 3 lD G D G

3y2B E Ww z2 x T

Xx |C FqD N yl , ll(x(d (11)T2 1y3
y ~Y3 lD G

whereC , C , D andD are unknown constants. Using1 2 1 2

(i) the recurrence relations of Bessel, Neumann and
modified Bessel functionsw7x, and (ii) the boundary
conditions atxs0, ll and d: andc (0)sc (0) c91 2 1

and(0)sc9 (0); c (ll)sc (ll) c9 (ll)sc9 (ll);2 2 3 2 3

and the constantC , C ,c (d)sc (d) c9 (d)sc9 (d),3 4 3 4 1 2

C andD , along withR and S in Eq. (3) and Eq.(4),1 2

were determined as follows:

2ik yb C py2sin(py3)1 24 2C s ,1 b13

4ik sin(py3)1C s ,2 w xŽ .b pqb p y b yb q1qcos(py3)24 13 68 57

b C p68 2D s , D syC py2,1 2 22b sin(py3)57

a C p2 2RsC a q y1,1 1 2sin(py3)
yik d2 w xSse a D qa D ysin(py3) (12)5 1 6 2

where b sik a ya y2, b sik a ya y2, b s13 1 1 3 24 1 2 4 57

ik a ya y2, b sik a ya y2 and2 5 7 68 2 6 8

1y2 yipy6 1y2 ipy6wŽ . Ž .a sl e J t , a sl e J t1 1y3 0 2 y1y3 0
yipy6 xŽ .ye J t ,1y3 0

1 lyipy6 ipy3w xŽ . Ž . Ž .a s e J t q e J t yJ t ,3 1y3 0 y2y3 0 4y3 01y2ll l
1 lipy6 yipy6w xŽ . Ž .a s e J t ye J t q4 y1y3 0 1y3 01y2ll l

i2py3w xŽ . Ž .= e J t yJ tµ y4y3 0 2y3 0
ipy3w xŽ . Ž .ye J t yJ t ,∂y2y3 0 4y3 0

1y2 Ž .a s(dylyl) J t5 1y3 1
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1y2w xŽ . Ž .a s(dylyl) J t cos(py3)yJ t ,6 1y3 1 y1y3 1

1 (dylyl)
wŽ . Ž .a s J t q J t7 1y3 1 y2y3 11y2l(dylyl) l

xŽ .yJ t ,4y3 1

1
w xŽ . Ž .a s J t cos(py3)yJ t8 1y3 1 y1y3 11y2l(dylyl)

(dylyl)
w xŽ . Ž .q J t yJ t cos(py3)µ y2y3 1 4y3 1l

w xŽ . Ž .y J t yJ t ∂y4y3 1 2y3 1

and
2 23y2 ipy2 3y2t s l e and t s (dylyl) .0 13 3

As shown in Fig. 1c, in the case ofd-ll, over all
the barrier regionE is lower than the barrier potentialx

and thus the wave functions of the tunneling electron
must only satisfy Eq.(8a) and there are the constantR,
S, C , C to be determined. In this case, the solutions1 2

of Eq. (8a) has the form of Eq.(10) in the region 0(
instead of the region Using the boundaryx(d 0(x(ll.

conditions at xs0 and xsd: andc (0)sc (0) c91 2

and the(0)sc9 (0); c (d)sc (d) c9 (d)sc9 (d),1 2 2 4 2 4

constantC , C , R andS were determined as follows:1 2

2ib k68 1C s ,1 b b yb b13 68 57 24

2b C sin(py3)57 1C s ,2 b p68

a C p2 2RsC a q y1,1 1 2sin(py3)
yik d2 w xSse a C qa C py2sin(py3) (13)5 1 6 2

where andb sik a qa y2, b sik a qa y2,57 2 5 7 68 2 6 8

1y2 yipy6 Ž .a s(lydyl) e J t ,5 1y3 1
1y2 ipy6 yipy6w xŽ . Ž .a s(lydyl) e J t ye J t ,6 y1y3 1 1y3 1

1 yipy6 Ž .a s e ,J t7 1y3 11y2l(lydyl)
Ž .lydyl

ipy3w xŽ . Ž .q e J t yJ t ,y2y3 1 4y3 1l
1 ipy6 yipy3w xŽ . Ž .a s e J t ye J t8 y1y3 1 1y3 11y2l(lydyl)

(lydyl) i2py3w xŽ . Ž .q e J t yJ tµ y4y3 1 2y3 1l
ipy6w xŽ . Ž .ye J t yJ t ∂y2y3 1 4y3 1

and
2 ipy2t s (lydyl)e .1 3

We have obtained the exact analytic solutions(for
the electron wave functions) of Eq. (1) in the two cases:
(i) the solutions consist of Eq.(3), Eq. (4), Eq.d0ll,
(10), Eq. (11) and Eq.(12); (ii) the solutionsd-ll,
consist of Eq.(3), Eq. (4), Eq. (10) and Eq.(13). The
electron tunneling probability,P, is given by

2Z ZPs S (14)

whereS is the transmission coefficient appearing in Eq.
(4). The tunneling current density isw8x

MAXE `U x4pem 2Z Z w Ž .Js S dE f E qEx L x r| |h 0 0

xŽ .yf E qE eV dER x r r
MAXEU x E yk Tr Bw4pem e2Z Z xs S k T lnB| E Eyk yE(T ykr x TB fL) Bh 1qe ey0

E Eyk s`Tr rB ze
|yln dExE Eyk yE(T qeV ykr x TB fR ) B1qe e ~E s0r

MAXEU x4pem 2Z Zs S k TB|h 0

E yE( ykx TfL) Bw zeV 1qe
x |= yln dE (15)xE yE( qeV ykx TfR ) Bk T 1qey ~B

where is the transverse kinetic energy of theE sEyEr x

electron in the direction perpendicular to thex-axis
(parallel to the junction interface), k is Boltzmann’sB

constant andT is temperature.

3. Experiment

In order to compare Brinkman’s two extreme models
to the ideal stepped boundary model presented in this
paper, we determined the parameters(width and height)
of the trapezoidal effective barrier by fitting the calcu-
lated I–V curves based on the above the three models
to the experimental ones. The preparation of the junc-
tions used to obtain the experimentalI–V curves was
described in detail elsewherew9x. First, Al film strips
were evaporated on glass slides in a vacuum chamber
of typically 2=10 Torr. Then, to grow a thin Al Oy5

2 3

barrier layer on the Al film surface, the Al films were
exposed to an oxygen glow discharge at the pressure of
1=10 Torr for 10 min. This was followed by bakingy1

the samples in air at 2008C for 30 min and then cooling
the heated samples in air to room temperature slowly.
Next MgF film strips were evaporated over the edges2

of the oxidized Al film strips to increase the insulator
thickness at the edges. Finally, the top metal electrode
film strips (Au, Ag, or Cu) were deposited and the
tunnel junctions of 2.5=2.5 mm were obtained. Baking2

the samples in air made the Al O barrier layer denser2 3

and the increase in the insulator thickness at the edges
eliminated the problem of leakage current at the junction
edges, thus the applied bias to the junctions can be up
to 5.12 V at room temperature. The experimentalI–V
curves of the junctions are shown in Fig. 2 and were
measured in a liquid nitrogen Dewar(77 K) and the
top metal electrodes on the right were biased positively.

The bare Al O barrier layer thickness was measured2 3

with an ellipsometer(Rudolph 2436) before the top
metal electrode deposition. The incident angle of the
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Fig. 2. The experimentalI–V characteristics of the tunnel junctions at
77 K.

Table 1
The effective trapezoidal barrier parameters determines by fitting the calculatedI–V curves to the experimental ones

Parameters d (A)˚ f (eV)1 f (eV)2

Models
GDB PSB ISB GDB PSB ISB GDB PSB ISB

Al–Al O –Au2 3 24.4 27.3 21.0 2.65 3.25 4.07 1.05 0.95 1.82
Al–Al O –Ag2 3 25.3 28.0 23.1 2.90 3.40 3.77 0.85 0.90 1.77
Al–Al O –Cu2 3 12.0 10.7 15.2 2.85 2.95 3.78 3.10 3.30 2.97

The calculatedI–V curves were in the basis of Brinkmann’s graded diffuse boundary(GDB) model and perfectly sharp boundary(PSB)model,
and the ideal stepped boundary(ISB) model presented in this paper.

light beam to the bare Al O barrier layer was 708 and2 3

the wavelength was 5461 A. Care should be taken to˚
choose the complex optical constant of the Al film on
which the Al O barrier layer was grown. The reason2 3

for this is that the complex optical constant of the
evaporated Al films depends on the deposition
conditions.

4. Results and discussion

For thermal equilibrium the Fermi energy levels of a
system of metal electrodes in the tunnel junctions must
be in coincidence, hence in the case of metal electrodes
the vacuum level also must be in coincidence. Since the
Al bottom electrode(on the left in Fig. 1) was always
biased negatively, in order to simplify the calculation of
the theoretical I–V curves, we did not distinguish
between the left- and right-hand electrodes in Eq.(15)
and took the Fermi energy levels for both electrodes to
be 11.63 eV(i.e. the Fermi energy of Al). The reason
for this is that:(i) the selection of which electrode to
use is basically immaterial from the point of view of
reflecting structure in the tunneling conductancew5,8x;
(ii) the effect of two dissimilar electrodes in the MIM
tunnel junctions is to produce two unequal barrier
heights at two interfaces between each electrodes and
the insulating barrier film, and it has been included in

the trapezoidal barrier potential modelw6x. The effective
mass of electron in the Al O barrier layer,m*, was2 3

chosen to be 0.2m , wherem is the free-electron masse e

w9x. Thus, the barrier parameters obtained by fitting the
calculated I–V curves to the experimental ones are
shown in Table 1.

The bare Al O barrier layer thickness was determined2 3

to be 34.2"2.5 A by the ellipsometric measurement˚
and it is greater than the barrier widthd, as shown in
Table 1. This difference can be understood as follows:
(i) because grown Al O barrier layer is not uniform2 3

and has the surface roughness, and the tunneling prob-
ability increases exponentially with decrease in the
barrier width, the tunneling electrons prefer to go
through the thinner area. Since the ellipsometric values
are the geometric average ones, the tunneling values are
the physical effective ones;(ii) the diffusion of the
metal electrode atoms into the barrier layer leads to a
decrease in the average barrier thickness.

As seen in Table 1, for the ideal stepped boundary
model the barrier heightf in the Au- (Ag-, Cu-)1

junctions are approximately equal to each other because
they characterizes the same Al–Al O interface. The2 3

results for the ideal stepped boundary model are what
they should be and are in agreement with ones for both
graded diffuse boundary and perfectly sharp boundary
models. In contrast, for all the three models the barrier
height f at the Al O –Au (–Ag, –Cu) interface are2 2 3

quite different, in particular,f at the Al O –Cu inter-2 2 3

face much higher than that at the Al O –Au(–Ag)2 3

interface.
For both graded diffuse boundary and perfectly sharp

boundary models, the difference in the barrier height
f between the Al O –Au(–Ag) and –Cu interfaces2 2 3

can be understood by considering that at the interfaces
oxygen atoms with dangling bonds can combine with
Cu atoms but inactive Au and Ag atoms, thus copper
oxide of one or two monolayer thickness is grown at
the interface and an additional barrier must be consid-
ered w10x. On the other hand, the top electrode atoms
have the different atom radii: 1.439 A(Au), 1442 A˚ ˚
(Ag), 1.280 A(Cu) and the Cu atoms with the smaller˚
radium are easier to diffuse into the Al O barrier. As2 3

shown in Table 1, this means that the barrier width of
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the Cu-junction is much shorter than that of the Au-
and Ag-junctions. However, for inelastic electron tun-
neling spectroscopy(IETS) the case is different. It is
found that some top metal electrodes of junctions(e.g.
Al and Cr) will destroy the layer of molecules that were
doped into the junction and others(e.g. Pb and Ti) will
not w11x. For Pb top electrode, tunneling spectra are
obtained that closely resemble infrared spectra or Raman
spectra of the dopant molecules without a top electrode.
Therefore, Pb top electrode is widely used in junctions
of IETS.

Based on the same explanations as above, for the
ideal stepped boundary model thef at the Al O –Cu2 2 3

interface much higher than that at the Al O –Au(–Ag)2 3

interface and the barrier width of the Cu-junction is
much shorter than that of the Au- and Ag-junctions. It
should be noted that, as seen in Table 1, in the Cu-
junction there isf -f for both graded diffuse bound-1 2

ary and perfectly sharp boundary models and, in
contrast, there isf )f for the ideal stepped boundary1 2

model. This difference between the ideal stepped bound-
ary model and the graded diffuse(or the perfectly
sharp) boundary model can be explained as follows: as
seen in Eq.(5a), l (with a length dimension) should be
positive for any given bias voltageV, in other words,
for the ideal stepped boundary model the assumption of
f )f has been made(of course, the another assump-1 2

tion of f -f can be chosen to make). In contrast, for1 2

the graded diffuse(or the perfectly sharp) boundary
model there is not such a pre-assumption off )f (or1 2

f -f ). It should be emphasized that the assumption1 2

of f )f makes no difference to characterizing the1 2

junction interfaces. For example, as shown in Table 1,
for the ideal stepped boundary model the barrier height
f s1.82, 1.77 and 2.97 eV at the Al O –Au, –Ag and2 2 3

–Cu interface, respectively, and thef at the Al O –2 2 3

Cu interface are much higher than that at the Al O –2 3

Au (–Ag) interface. Obviously, for ideal stepped
boundary model the variation in thef values with the2

top electrodes is in agreement with that for the graded
diffuse boundary model and the perfectly sharp bound-
ary model.

The experimentalI–V curves were measured at in
liquid nitrogen (77 K), which is easy to get. The
temperature dependence of the current density in a MIM
tunnel junction can be described byJ(V,T)s

2 4w xJ(V,0) 1q(pc k T) (1y6)q(pc k T) (7y360)q∆ ,1 B 1 B

where V is the bias voltage,T is temperature,k isB

Boltzmann constant and the coefficientc for small bias1

voltages((1.0 V) is approximately 20(eV) w12x.y1

Since k T (77 K)s64=10 eV, the increase in they3
B

current density is less 3% as the temperature goes from
0 to 77 K. This shows that theI–V characteristics at 77
K differs only slightly from that at 4.2 K. Recently,
temperature dependence of the(spin-independent) con-

ductanceG (T, Vs0) for a zero-biased Co–insulator–
Py tunnel junction with the insulator composed of 4 A˚
Al and 10 A Dy oxidized was measured, but the˚
temperature dependence of theI–V characteristics is
absent from this type of tunnel junctionw13x. In general,
a small influence of temperature on theI–V character-
istics is typical for tunneling. Nevertheless, there is still
a requirement for measuring the temperature dependence
of the I–V characteristics, in particular, for determining
the temperature dependence of the tunneling barrier
parameters. It would be good to perform the measure-
ments of theI–V characteristics at a temperature as low
as possible to eliminate thermionic emission, which will
results in a nontunneling current component in the
junctions. However, for IETS the tunneling spectra are
taken always at 4.2 K(or lower temperature). The
reason for this is that vibrational modes of surface
species have characteristic width of order 1 meV(or
greater) and a contribution to the spectrum width is
made by the thermal broadening, which comes from the
thermal smearing of the electron distribution around the
Fermi energyw11x. Hence, the tunneling spectra must
be run at cryogenic temperature to obtain resolutions
sufficient for the vibrational spectroscopy.

5. Summary

We presented an ideal stepped boundary model, which
treats the effective barrier potential of the biased MIM
tunnel junctions as a trapezoidal potential plus an
applied electric potential(from the biased voltage).
Thus, to our knowledge for the first time, the exact
analytic expressions for the electron wave functions and
the tunneling probabilities were obtained by solving
Schrodinger’s equation strictly. For comparison to Brink-¨
man’s two extreme models: the graded diffuse boundary
model(based on WKB approximation) and the perfectly
sharp boundary model(based on perturbation approxi-
mation), the three groups of barrier parameters were
determined by fitting the calculatedI–V curves to the
experimental ones for three different junctions with the
Au, Ag and Cu top electrodes at 77 K. The results show
that: (i) according to the ideal stepped boundary model
the tunneling electron behavior in the trapezoidal barrier
region is dependent on whether the electron energyEx

is lower or higher than the barrier height;(ii) the
variations in the barrier parameters obtained from the
above three models are in qualitative agreement with
each other. Also the results suggest that though a barrier
layer of tunnel junctions is a real existence, it can be
modeled in many ways to different effective barrier
potentials, for example, to rectangular or trapezoidal
ones with diffuse or sharp boundaries. Thus, a group of
the barrier parameters for each effective barrier potential
model can be obtained by fitting the calculatedI–V
curves based on the barrier model to the experimental
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ones. In addition, since the ferromagnetic MIM tunnel
junctions with TMR is a promising GMR device, the
effect of an applied external magnetic field on the
calculated barrier parameters on the basis of our model
should be a forthcoming subject for study.
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