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Abstract

An exactly solvable model, which treats the effective barrier potential of the biased metal-insulator—metal tunnel junctions as
a trapezoidal potential with aideal stepped boundary, is presented. Thus, the exact analytic expressions for the electron wave
functions and the tunneling probabilities were obtained by solving "Schrodinger's equation strictly. It is found that if the
longitudinal kinetic energy of the electrof,, is greater than the shorter side of the trapezoidal potential, in the barrier region
Schrodinger’s equation has to be solved in the two subregions: wihaselower and higher than the barrier height, respectively.
In order to compare the ideal stepped boundary model to Brinkman’'s two approximation niédélppl. Phys. 891970
1919, the graded diffuse boundary and perfectly sharp boundary model, the trapezoidal barrier parameters were determined b
fitting the calculated—V curves to the experimental ones at 77 K. The results show that for three types of jurfetiing\u,
Ag, and Cu top electrodgsthe variations in barrier parameters with the metal electrodes are in agreement with each other.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction calculation of the/-V characteristics have been per-
formed [3,4]. Of them, an important work, which was
Electron transport in metal—insulator—metafiM ) done by Brinkman et al., was to calculate the tunneling

tunnel junctions is one of the most important tunneling conductance of trapezoidal barrier potentials using two
phenomena. The reason for this is that MIM tunnel €xtreme models: theraded diffuse boundary model and
junctions have been well modeled in studying the theperfectly sharp boundary model[5]. For the graded
electron tunneling through a barrier experimentally and diffuse boundary model, the tunneling probability was
theoretically, and that have been applied in many aspectscalculated by using the WKB approximation. For the
[1,2]. Recently, due to progress in the investigation of Perfectly sharp boundary model, the wave functions
giant magnetoresistandéSMR), the research interests Were exactly constructed based on the boundary condi-
in spin-polarized tunneling magnetoresistadtdR) of tions and then the tunnell_ng current is calculated using
the ferromagnetic MIM tunnel junctions have been Bardeen’s transfer Ham|l_ton|an methpd. Brinkman’s
increasing rapidly(3,4]. The advantage in research on Work has shown that the inclusion of images does not
TMR is that it can be observed at room temperature radlcglly alter the shape of tﬁey characteristics of the
even without a strong external magnetic field, thus it is Junction. It should be emphasized that for the transfer
a promising GMR device. A key problem in the char- Ham|lton|§m method the tunneling process is treated as
acterization of the MIM tunnel junctions is to determine & Perturbing operator and then the tunneling matrix

their I-V characteristics and so far many studies on the elements_ are calculat_ed. So th? tra}nsfer Ham"ton'a!”
method is a perturbation approximation method and it
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model, which treats theffective barrier potential of the
biased MIM tunnel junctions as a trapezoidal potential
and the resultant barrier potential is the trapezoidal
potential plus an applied electric potential resulting from
the bias voltage. It means that the applied electric field
is located inside the insulator region of the junction and
the junctions have the ideal stepped boundaries. Thus
to our knowledge for the first time, the exact analytic
expressions for the electron wave functions and the
tunneling probabilities in the biased MIM tunnel junc-
tions were obtained by solving Schrodinger’s equation
strictly, instead of using the WKB approximation or
perturbation approximation method. In order to compare
our model with Brinkman’s graded diffuse boundary

model and perfectly sharp boundary model, three groups

of the barrier parameters were determined by fitting the
calculated/-V curves to the experimental ones for three
types of junctions(ones with Au, Ag and Cu top
electrodes at 77 K, respectively. For simplicity, the

image force correction is not included because the effect

of the image forces is only to round off the barrier

corner and to make the average height of the barrier

slightly lower [6].
2. Ideal stepped boundary model

Consider a MIM junction consisting of two metal

electrodes and separated by a thin barrier insulator layer

(10-20 A). The effective trapezoidal barrier potential
of the junction is modeled in one dimension with width
d, as shown in Fig. 1a. As the junction is biased, since
the applied electric field is located in the insulator
region, the resulting barrier potential/(x), for the
biased junction is the barrier potential plus the applied
electric potential, as shown in Fig. 1b or c. Based on
the free-electron and effective mass approximation, the
tunneling electron wavefunctiong(x) must satisfy the
Schrodinger’s equation

A2 d?
T o @ll!(x)+U(x)q;(x)=Ex¢(x) (1)
where
0 x<0
Ulx)= ¢1+EfL_(d)l_¢2+eV)§, O<x<d 2
—eV x>d

m* is the tunneling electron effective mass; is the
longitudinal kinetic energy in the-axis direction(per-
pendicular to the junction interfage Note that for
tunneling problems, there should li§ <E; +¢,. As
seen in Fig. la, if the bottom of the conductance band
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Fig. 1. Trapezoidal potential barrier model of metal—insulator—metal
tunnel junctions with(a) zero bias;(b) with a bias positive on the
right-hand metal and the electron enerfly> (Eq + &, —eV), ie.
d>I\; and (c) with a bias positive on the right-hand metal and the
electron energyE, < (Eq +d,—eV), i.ed<IN. The dash—dot lines
in (b) and (c) are the barrier potentials with zero bias. Note that for
the case of(b), the electron energg, < U(x) only in region of 0<
x<IN.

is taken as the zero point of potenti&}, and E is the
Fermi energy of the left and right electrodg, and ¢,

is the trapezoidal barrier height on the left and right;
respectively;V is the bias voltage and the electrode on
the right is biased positive.
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In the regionx <0 andx>d, the solutions for Eq(1) d?e 1dg

has, respectively, the form af,(x) andy,(x) 422 + 2 dz
. . 2
Pa(x) =+ Re, x<0 3 +[1— az ]qo=0, for IN<x<d (93)
Ya()=Se*,  x>d (4) z
. _ o a general solution of which is

whereR and S is the reflection and transmission coef-
ficient,  respectively; k,=2m*E)Y?/h, ko= ¢(x) =D1J 1/3(2) + DN 15(2) (9b)
[2m*(E +eV)]Y2/h. whereJ, 5 is Bessel functioni, 5 is Neumann function

In the barrier regiold<x<d, by introducing [7].

) Vs Thus, for the case af>I\, returning to the variable
l=[ dh ] (5a) x in Eq. (8b) and Eq.(9b), we obtained the solutions
2m*(db,— dbo+eV) of Eq. (6), U, and 55 as follows:
2’71*(¢1+EfL_Ex)lz x)1/2 2 x )32
A= P (5b) ¢2(x)=[>\—ﬂ {Cllm[g[x—ﬂ ]
3/2

Eqg. (1) becomes +C2K1/3[§[)\—);] ]} 0<x<I\ (10
d?ys [x )\]
5 |w=0 (6) X 2 2x N2
o 0= (5] owaef S(3-4) |

Both [/ and A are positive,/ has a length dimension 2(x 3/2
and\ is dimensionless. Note that because the tunneling +D2N1/3[—[——>\] ]} IN<x<d 1D
electrons with the differenk, face different parts of the 3L
trapezoidal barrier, in solving Eq(6) there are two  whereC,, C,, D, andD,are unknown constants. Using
cases to be considered separatély], i.e. E, > (Eq + (i) the recurrence relations of Bessel, Neumann and
bo—eV) andiI<\, i.e. E,.<(Eq +dr—eV). modified Bessel functiong7], and (ii) the boundary

As shown in Fig. 1b, in the case of=I\ for the conditions atx=0, I\ and d: {,(0)=y(0) and ',
tunneling electron there are the two different subregions (0) =4',(0); U,(IN)=yz(IN) and ' LIN) =y LIN);
inside the trapezoidal barrier regiof<x<I\ (E, is P3(d) =4(d) and ' (d) =\’ Ad), the constanf, C,
lower than the barrier potentinland IN<x<d (E, is C, andD,, along withR and S in Eq. (3) and Eq.(4),
higher than the barrier potential were determined as follows:

In the barrier subregio®@<x <IN (E, is lower than . .
the barrier potentia) introducing the dimensionless ¢, = 2lkl—b24C2’lT/25Ir(’lT/3)’

paramete€ =\ —(x/l), EQq(6) becomes bis
4ik,sin(m/3)

dzlp C2= s
F+§¢=O 7 bogm +bgm[— (b g/ b 5+ 1 +codm/3)]

S besCom

. Di=——2%—— D,=—C/2,

In terms of the transformations ane-(2/3)é%2,  Eq. 2bg-sin(m/3)

(7) can be rewritten as a,Com
R=Cia,+—22——1,
e 1de (1/3)2 2sin(w/3)
@+_d__[l+ > ](p=0, for O<x <IN (8a) S=e " *[qsD,+agD ,/sin(m/3)] (12)
z dz z

Where b13=ik1a 1_a:¥2, b 24— lk a--a 12, b 57

This is a modified Bessel equation, a general solution ikaas—az/2, beg=iksag2 and
of which is a;=N"2e" /8] 1 5(to), ar=NY2[€"/CJ _,4(to)

e(x)=C111/3(2) + CoK 1/5(2) (8b) —e 0] (1)),

— i )\ [T
where I3 and K,/; are modified Bessel functions 9= 7,7/2€ " ya(to) + 7€ Pl 28t —J alto)l,

[7].

) ) A

Similary, in the barriersubregion IN<x<d (E, is a4=l)\l/z[em/sj_l/g(to)—(gmr/<aJ]/3(to)]_1_7
higher than the parrier _potent)al introducing &= X {e?7/3]] (t)—T alto)]
(x/D—X\, Eq. (6) is rewritten asds/dys>+ =0, S 3zl
which can be transformed, by using=¢"2¢  ane — €T o5t = J altol},

(2/3)£%2, as a Bessel equation of one third order as=(d/1—=N\)"2] 13(t1)
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ag=(d/1—N)"?[J 5(t)codm /3) —J _1 5(t1)],

1 (d l \)
Whm(hﬂ‘ / [/ —2/3(t0)
—Ja3(t1)],

1
W [J1/a(t)cosLm/3) —J _1/5(t1)]

(d/l {[J 2/3(t1) —J 43(t1)]codw/3)
_[J74/3f1) Ja3(t )]}

ar;=

ag=

2 . 2
andzo= é)ﬁ/ze‘"/z andt,= é(d/l—x)3/2.

As shown in Fig. 1c, in the case af<I\, over all
the barrier regiork, is lower than the barrier potential

and thus the wave functions of the tunneling electron

must only satisfy Eq(8a) and there are the constaRi

S, Ci, C to be determined. In this case, the solutions \yherep, =g —E,

of Eq. (82 has the form of Eq(10) in the region <
x<d instead of the regioA<x <I\.
conditions atx=0 and x=d: {,(0)=1,(0) and
10)=0'20); vAdD)=vLd) and ' Ld)=V" {d), the

constantC,, C,, R andS were determined as follows:

2ibggk 1
Cl= ’
bl3b 68 b S-l) 24
Co= I
beg’ﬂ'
a2C21T
R=Ca+ ——— <1,
17 2sin(w /3)

S=e *[qzC 1+ asC mm/2sin(m/3)] 13)
Whereb57:ikza5+a7/2, beszlkg 6+a 42, and
as=(\ _d/l)l/zefm/ﬁjl/s(fl),

ag=(\—d/DYe™/8] _y5(t1) — € ™/CT 15(t1)],

1
e el

(N—=d/l)
/ em/s[\]—z/s(fl) —J 43t )],

1 j — i
ag= W[e“/BJ—l/s(tl)—e 73] 13(11)]

A=d/l) .
+ %{6‘2”/3[]74/3(11) —J 3(t1)]
— €@ 5t 1) —J ayalt )]}

ar;=

2 )
andt1=§()\—d/l)e*“/2.

We have obtained the exact analytic solutidifier
the electron wave function®f Eq. (1) in the two cases:
(i) d=I\, the solutions consist of Eq3), Eq. (4), Eq.
(10), Eq. (11 and Eqg.(12); (ii) d<IA, the solutions
consist of Eq.(3), Eq. (4), Eq. (10) and Eq.(13). The
electron tunneling probability?, is given by

~|s?) (14)

Using the boundary

whereS is the transmission coefficient appearing in Eq.
(4). The tunneling current density (8]

4rem* [ )
J= h |S| dEx [fL(Ex+Er)
o]

0

—frEx+EeV)|dE,

4 5 [EMAX
_ 4mem*™ f | S|2kBT[|n
h [0}

eEr/kBT Er=c
—In dEx
1+ eEr/kBT éEx*EfRJreV)/kBT F—o

4 5 [EMAX
_ Amem J’ |S|2kBT
h (0]

ev
X| ——==In
[kBT

eEr/kBT
1+ efr/keT gEx—En)/keT

1+ eEx—Ew)/ksT
1+ e(Ex*EfR‘FeV)/kBT :| dEX

(15

is the transverse kinetic energy of the
electron in the direction perpendicular to theaxis
(parallel to the junction interfade kg is Boltzmann’s
constant and’ is temperature.

3. Experiment

In order to compare Brinkman'’s two extreme models
to the ideal stepped boundary model presented in this
paper, we determined the parametesidth and height
of the trapezoidal effective barrier by fitting the calcu-
lated I-V curves based on the above the three models
to the experimental ones. The preparation of the junc-
tions used to obtain the experimenfalV curves was
described in detail elsewhel®]. First, Al film strips
were evaporated on glass slides in a vacuum chamber
of typically 2x10~5 Torr. Then, to grow a thin Al @
barrier layer on the Al film surface, the Al films were
exposed to an oxygen glow discharge at the pressure of
1x10~* Torr for 10 min. This was followed by baking
the samples in air at 200 for 30 min and then cooling
the heated samples in air to room temperature slowly.
Next MgF, film strips were evaporated over the edges
of the oxidized Al film strips to increase the insulator
thickness at the edges. Finally, the top metal electrode
film strips (Au, Ag, or Cu were deposited and the
tunnel junctions of 2.5 2.5 mn? were obtained. Baking
the samples in air made the Al;O barrier layer denser
and the increase in the insulator thickness at the edges
eliminated the problem of leakage current at the junction
edges, thus the applied bias to the junctions can be up
to 5.12 V at room temperature. The experimeritaV
curves of the junctions are shown in Fig. 2 and were
measured in a liquid nitrogen Dew&r7 K) and the
top metal electrodes on the right were biased positively.

The bare A} Q barrier layer thickness was measured
with an ellipsometer(Rudolph 2436 before the top
metal electrode deposition. The incident angle of the
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60 the trapezoidal barrier potential modél. The effective
mass of electron in the Al © barrier layen*, was
50 chosen to be 0.2, wherem. is the free-electron mass
1 ;’ :::::283;':“ [9]. Thus, the barrier parameters obtained by fitting the
;E‘ 401 A A|-A|§o:.cﬁ calculated I-V curves to the experimental ones are
= 30_' shown in Table 1.
g | The bare A} Q barrier layer thickness was determined
& 5. to be 34.2:2.5 A by the ellipsometric measurement
3 | and it is greater than the barrier width as shown in
10 Table 1. This difference can be understood as follows:
1 A’A’A,A,A,A/A (i) because grown Al @ barrier layer is not uniform
00'_0 05 10 15 20 25 30 35 40 and has the surface roughness, and the tunneling prob-

ability increases exponentially with decrease in the
barrier width, the tunneling electrons prefer to go
Fig. 2. The experimentdrV characteristics of the tunnel junctions at through the thln_ner area. Since the elllpsometrlc values
77 K. are the geometric average ones, the tunneling values are
the physical effective onesii) the diffusion of the

light beam to the bare Al © barrier layer was®7nd metal electrode atoms into the barrier layer leads to a
the wavelength was 5461 A. Care should be taken todecrease in the average barrier thickness.

choose the complex optical constant of the Al film on ~ As seen in Table 1, for the ideal stepped boundary

which the ALO, barrier layer was grown. The reason model the barrier heightb, in the Au- (Ag-, Cu-)

for this is that the complex optical constant of the junctions are approximately equal to each other because
evaporated Al films depends on the deposition they characterizes the same Al;ALO interface. The

VOLTAGE (V)

conditions. results for the ideal stepped boundary model are what
they should be and are in agreement with ones for both
4. Results and discussion graded diffuse boundary and perfectly sharp boundary

models. In contrast, for all the three models the barrier

For thermal equilibrium the Fermi energy levels of a height &, at the ALO,~Au(-Ag, —Cu interface are
system of metal electrodes in the tunnel junctions must quite different, in particularg, at the ALO;—Cu inter-
be in coincidence, hence in the case of metal electrodedace much higher than that at the ,ALO —Au-Ag)
the vacuum level also must be in coincidence. Since theinterface.
Al bottom electrode(on the left in Fig. 2 was always For both graded diffuse boundary and perfectly sharp
biased negatively, in order to simplify the calculation of boundary models, the difference in the barrier height
the theoretical/I-V curves, we did not distinguish &, between the Al @ —Au—-Ag) and —Cu interfaces
between the left- and right-hand electrodes in Eb) can be understood by considering that at the interfaces
and took the Fermi energy levels for both electrodes to oxygen atoms with dangling bonds can combine with
be 11.63 eV(i.e. the Fermi energy of Al The reason  Cu atoms but inactive Au and Ag atoms, thus copper
for this is that:(i) the selection of which electrode to oxide of one or two monolayer thickness is grown at
use is basically immaterial from the point of view of the interface and an additional barrier must be consid-
reflecting structure in the tunneling conductar{&eg; ered [10]. On the other hand, the top electrode atoms
(i) the effect of two dissimilar electrodes in the MIM have the different atom radii: 1. 439 pAu), 1442 A
tunnel junctions is to produce two unequal barrier (Ag), 1.280 A(Cu) and the Cu atoms with the smaller
heights at two interfaces between each electrodes andadium are easier to diffuse into the Al;O barrier. As
the insulating barrier film, and it has been included in shown in Table 1, this means that the barrier width of

Table 1

The effective trapezoidal barrier parameters determines by fitting the calculdteclirves to the experimental ones

Parameters d Q) ¢, (eV) ¢, (eV)

Models GDB PSB ISB GDB PSB ISB GDB PSB ISB
Al-Al O s~Au 24.4 27.3 21.0 2.65 3.25 4.07 1.05 0.95 1.82
Al-Al O +~Ag 25.3 28.0 23.1 2.90 3.40 3.77 0.85 0.90 1.77
Al-Al O +Cu 12.0 10.7 15.2 2.85 2.95 3.78 3.10 3.30 2.97

The calculated—V curves were in the basis of Brinkmann's graded diffuse boun@@BB) model and perfectly sharp boundd®SB) model,
and the ideal stepped boundaigB) model presented in this paper.
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the Cu-junction is much shorter than that of the Au- ductanceG (T, V=0) for a zero-biased Co—insulatpr—
and Ag-junctions. However, for inelastic electron tun- Py tunnel junction with the insulator composed of 4 A
neling spectroscopyIETS) the case is different. It is Al and 10 A Dy oxidized was measured, but the

found that some top metal electrodes of junctidasy. temperature dependence of tlieV characteristics is
Al and Cn will destroy the layer of molecules that were absent from this type of tunnel junctida3]. In general,
doped into the junction and othefs.g. Pb and Tiwill a small influence of temperature on tleV character-

not [11]. For Pb top electrode, tunneling spectra are istics is typical for tunneling. Nevertheless, there is still
obtained that closely resemble infrared spectra or Raman@ requirement for measuring the temperature dependence
spectra of the dopant molecules without a top electrode.of the /-V characteristics, in particular, for determining
Therefore, Pb top electrode is widely used in junctions the temperature dependence of the tunneling barrier
of IETS. parameters. It would be good to perform the measure-
Based on the same explanations as above, for thements of thel-V characteristics at a temperature as low
ideal stepped boundary model tiig at the AL,O,—Cu as possible to eliminate thermionic emission, which will
interface much higher than that at the,AL O —AHAQ) _resul_ts in a nontunneling current component in the
interface and the barrier width of the Cu-junction is Junctions. However, for IETS the tunneling spectra are
much shorter than that of the Au- and Ag-junctions. It taken always at 4.2 K(or lower temperatuse The
should be noted that, as seen in Table 1, in the Cu-feason for this is that vibrational modes of surface

junction there ish, < &, for both graded diffuse bound- SPecies have characteristic width of order 1 medr
ary and perfectly sharp boundary models and, in greate) and a contribution to the spectrum width is
contrast, there ig, > &, for the ideal stepped boundary Made by the thermal broadening, which comes from the
model. This difference between the ideal stepped bound—therm_al smearing of the electron d'Str.'bUt'on around the
ary model and the graded diffuseor the perfectly Fermi energy[11]. Hence, the tunneling spectra must
sharp boundary model can be explained as follows: as be run at cryogenic temperature to obtain resolutions
seen in Eq(5a), [ (with a length dimensionshould be sufficient for the vibrational spectroscopy.

positive for any given bias voltag®, in other words,

for the ideal stepped boundary model the assumption of
b,.> b, has been madéof course, the another assump-
tion of ¢, < ¢, can be chosen to makeln contrast, for
the graded diffuse(or the perfectly sharp boundary
model there is not such a pre-assumptionrpef> ¢, (or

5. Summary

We presented an ideal stepped boundary model, which
treats the effective barrier potential of the biased MIM
tunnel junctions as a trapezoidal potential plus an
<4, 1 shoud be emphaized i th assumpion S e ncant o e o s e e
of b,>d, makes no difference to characterizing the g5 tic expressions for the electron wave functions and
junction interfaces. For example, as shown in Table 1, ihe tynneling probabilites were obtained by solving
for the ideal stepped boundary model the barrier height scnradinger's equation strictly. For comparison to Brink-
$,=1.82, 1.77 and 2.97 eV at the AlO —Au, —Ag and map's two extreme models: the graded diffuse boundary
—Cu interface, respectively, and tig, at the ALO;—  model(based on WKB approximatiorand the perfectly
Cu interface are much higher than that at the Al O — sharp boundary moddbased on perturbation approxi-
Au (-Ag) interface. Obviously, for ideal stepped mation), the three groups of barrier parameters were
boundary model the variation in thi, values with the  determined by fitting the calculate-V curves to the
top electrodes is in agreement with that for the graded experimental ones for three different junctions with the
diffuse boundary model and the perfectly sharp bound- Au, Ag and Cu top electrodes at 77 K. The results show
ary model. that: (i) according to the ideal stepped boundary model

The experimental—V curves were measured at in the tunneling electron behavior in the trapezoidal barrier
liquid nitrogen (77 K), which is easy to get. The region is dependent on whether the electron endigy
temperature dependence of the current density in a MIMis lower or higher than the barrier heightii) the
tunnel junction can be described by (V,T)= variations in the barrier parameters obtained from the
JWV,0)[1+ (mc1kgT)?(1/6) + (e kgT)X(7/360) + -], above three models are in qualitative agreement with
where V is the bias voltageT is temperaturekg is each other. Also the results suggest that though a barrier
Boltzmann constant and the coefficientfor small bias layer of tunnel junctions is a real existence, it can be
voltages(<1.0 V) is approximately 20(eV) ! [12]. modeled in many ways to different effective barrier
Since kgT (77 K)=64x10"2 eV, the increase in the potentials, for example, to rectangular or trapezoidal
current density is less 3% as the temperature goes fromones with diffuse or sharp boundaries. Thus, a group of
0 to 77 K. This shows that the-V characteristics at 77  the barrier parameters for each effective barrier potential
K differs only slightly from that at 4.2 K. Recently, model can be obtained by fitting the calculatédV
temperature dependence of ttepin-independentcon- curves based on the barrier model to the experimental
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ones. In addition, since the ferromagnetic MIM tunnel

junctions with TMR is a promising GMR device, the

effect of an applied external magnetic field on the
calculated barrier parameters on the basis of our model

should be a forthcoming subject for study.
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